Comprehensive investigation of RNA-sequencing dataset reveals the hub genes and molecular mechanisms of coronavirus disease 2019 acute respiratory distress syndrome

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wangsheng Deng, Jiaxing Zeng, Shunyu Lu, Chaoqian Li
{"title":"Comprehensive investigation of RNA-sequencing dataset reveals the hub genes and molecular mechanisms of coronavirus disease 2019 acute respiratory distress syndrome","authors":"Wangsheng Deng,&nbsp;Jiaxing Zeng,&nbsp;Shunyu Lu,&nbsp;Chaoqian Li","doi":"10.1049/syb2.12034","DOIUrl":null,"url":null,"abstract":"<p>The goal of this study is to reveal the hub genes and molecular mechanisms of the coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) based on the genome-wide RNA sequencing dataset. The RNA sequencing dataset of COVID-19 ARDS was obtained from GSE163426. A total of 270 differentially expressed genes (DEGs) were identified between COVID-19 ARDS and control group patients. Functional enrichment analysis of DEGs suggests that these DEGs may be involved in the following biological processes: response to cytokine, G-protein coupled receptor activity, ionotropic glutamate receptor signalling pathway and G-protein coupled receptor signalling pathway. By using the weighted correlation network analysis approach to analyse these DEGs, 10 hub DEGs that may play an important role in COVID-19 ARDS were identified. A total of 67 potential COVID-19 ARDS targetted drugs were identified by a complement map analysis. Immune cell infiltration analysis revealed that the levels of T cells CD4 naive, T cells follicular helper, macrophages M1 and eosinophils in COVID-19 ARDS patients were significantly different from those in control group patients. In conclusion, this study identified 10 COVID-19 ARDS-related hub DEGs and numerous potential molecular mechanisms through a comprehensive analysis of the RNA sequencing dataset and also revealed the difference in immune cell infiltration of COVID-19 ARDS.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/4b/SYB2-15-205.PMC8441671.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The goal of this study is to reveal the hub genes and molecular mechanisms of the coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) based on the genome-wide RNA sequencing dataset. The RNA sequencing dataset of COVID-19 ARDS was obtained from GSE163426. A total of 270 differentially expressed genes (DEGs) were identified between COVID-19 ARDS and control group patients. Functional enrichment analysis of DEGs suggests that these DEGs may be involved in the following biological processes: response to cytokine, G-protein coupled receptor activity, ionotropic glutamate receptor signalling pathway and G-protein coupled receptor signalling pathway. By using the weighted correlation network analysis approach to analyse these DEGs, 10 hub DEGs that may play an important role in COVID-19 ARDS were identified. A total of 67 potential COVID-19 ARDS targetted drugs were identified by a complement map analysis. Immune cell infiltration analysis revealed that the levels of T cells CD4 naive, T cells follicular helper, macrophages M1 and eosinophils in COVID-19 ARDS patients were significantly different from those in control group patients. In conclusion, this study identified 10 COVID-19 ARDS-related hub DEGs and numerous potential molecular mechanisms through a comprehensive analysis of the RNA sequencing dataset and also revealed the difference in immune cell infiltration of COVID-19 ARDS.

Abstract Image

综合rna测序数据揭示2019冠状病毒病急性呼吸窘迫综合征枢纽基因及分子机制
本研究旨在基于全基因组RNA测序数据揭示2019冠状病毒病(COVID-19)急性呼吸窘迫综合征(ARDS)的枢纽基因和分子机制。COVID-19 ARDS的RNA测序数据集来自GSE163426。在COVID-19 ARDS患者与对照组患者之间共鉴定出270个差异表达基因(DEGs)。DEGs的功能富集分析表明,这些DEGs可能参与细胞因子应答、g蛋白偶联受体活性、嗜离子性谷氨酸受体信号通路和g蛋白偶联受体信号通路等生物学过程。采用加权相关网络分析方法对这些deg进行分析,鉴定出10个可能在COVID-19 ARDS中起重要作用的枢纽deg。通过补体图谱分析,共鉴定出67种潜在的COVID-19 ARDS靶向药物。免疫细胞浸润分析显示,COVID-19 ARDS患者的T细胞CD4 naive、T细胞滤泡辅助细胞、巨噬细胞M1和嗜酸性粒细胞水平与对照组相比有显著差异。综上所述,本研究通过对RNA测序数据的综合分析,确定了10个与COVID-19 - ARDS相关的枢纽DEGs和许多潜在的分子机制,并揭示了COVID-19 - ARDS免疫细胞浸润的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信