Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.

Yifei Fan, Navdeep Dahiya, Samuel Bignardi, Romeil Sandhu, Anthony Yezzi
{"title":"Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.","authors":"Yifei Fan,&nbsp;Navdeep Dahiya,&nbsp;Samuel Bignardi,&nbsp;Romeil Sandhu,&nbsp;Anthony Yezzi","doi":"10.1109/icpr48806.2021.9412245","DOIUrl":null,"url":null,"abstract":"<p><p>We propose Directionally Paired Principal Component Analysis (DP-PCA), a novel linear dimension-reduction model for estimating coupled yet partially observable variable sets. Unlike partial least squares methods (e.g., partial least squares regression and canonical correlation analysis) that maximize correlation/covariance between the two datasets, our DP-PCA directly minimizes, either conditionally or unconditionally, the reconstruction and prediction errors for the observable and unobservable part, respectively. We demonstrate the optimality of the proposed DP-PCA approach, we compare and evaluate relevant linear cross-decomposition methods with data reconstruction and prediction experiments on synthetic Gaussian data, multi-target regression datasets, and a single-channel image dataset. Results show that when only a single pair of bases is allowed, the conditional DP-PCA achieves the lowest reconstruction error on the observable part and the total variable sets as a whole; meanwhile, the unconditional DP-PCA reaches the lowest prediction errors on the unobservable part. When an extra budget is allowed for the observable part's PCA basis, one can reach an optimal solution using a combined method: standard PCA for the observable part and unconditional DP-PCA for the unobservable part.</p>","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icpr48806.2021.9412245","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icpr48806.2021.9412245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose Directionally Paired Principal Component Analysis (DP-PCA), a novel linear dimension-reduction model for estimating coupled yet partially observable variable sets. Unlike partial least squares methods (e.g., partial least squares regression and canonical correlation analysis) that maximize correlation/covariance between the two datasets, our DP-PCA directly minimizes, either conditionally or unconditionally, the reconstruction and prediction errors for the observable and unobservable part, respectively. We demonstrate the optimality of the proposed DP-PCA approach, we compare and evaluate relevant linear cross-decomposition methods with data reconstruction and prediction experiments on synthetic Gaussian data, multi-target regression datasets, and a single-channel image dataset. Results show that when only a single pair of bases is allowed, the conditional DP-PCA achieves the lowest reconstruction error on the observable part and the total variable sets as a whole; meanwhile, the unconditional DP-PCA reaches the lowest prediction errors on the unobservable part. When an extra budget is allowed for the observable part's PCA basis, one can reach an optimal solution using a combined method: standard PCA for the observable part and unconditional DP-PCA for the unobservable part.

二元估计问题的方向配对主成分分析。
我们提出了方向配对主成分分析(DP-PCA),这是一种新的线性降维模型,用于估计耦合但部分可观察的变量集。与偏最小二乘方法(例如,偏最小二乘回归和典型相关分析)最大化两个数据集之间的相关性/协方差不同,我们的DP-PCA分别直接最小化可观测部分和不可观测部分的重建和预测误差,条件或无条件地最小化。我们证明了所提出的DP-PCA方法的最优性,并通过在合成高斯数据、多目标回归数据集和单通道图像数据集上的数据重建和预测实验,比较和评估了相关的线性交叉分解方法。结果表明,当只允许一对碱基时,条件DP-PCA在可观测部分和总体变量集上的重构误差最小;同时,无条件DP-PCA在不可观测部分的预测误差最小。当可观测部分的PCA基础允许额外预算时,可以使用可观测部分的标准PCA和不可观测部分的无条件DP-PCA相结合的方法来获得最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信