Recovery of surfaces and functions in high dimensions: sampling theory and links to neural networks.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2021-01-01 Epub Date: 2021-05-10 DOI:10.1137/20M1340654
Qing Zou, Mathews Jacob
{"title":"Recovery of surfaces and functions in high dimensions: sampling theory and links to neural networks.","authors":"Qing Zou, Mathews Jacob","doi":"10.1137/20M1340654","DOIUrl":null,"url":null,"abstract":"<p><p>Several imaging algorithms including patch-based image denoising, image time series recovery, and convolutional neural networks can be thought of as methods that exploit the manifold structure of signals. While the empirical performance of these algorithms is impressive, the understanding of recovery of the signals and functions that live on manifold is less understood. In this paper, we focus on the recovery of signals that live on a union of surfaces. In particular, we consider signals living on a union of smooth band-limited surfaces in high dimensions. We show that an exponential mapping transforms the data to a union of low-dimensional subspaces. Using this relation, we introduce a sampling theoretical framework for the recovery of smooth surfaces from few samples and the learning of functions living on smooth surfaces. The low-rank property of the features is used to determine the number of measurements needed to recover the surface. Moreover, the low-rank property of the features also provides an efficient approach, which resembles a neural network, for the local representation of multidimensional functions on the surface. The direct representation of such a function in high dimensions often suffers from the curse of dimensionality; the large number of parameters would translate to the need for extensive training data. The low-rank property of the features can significantly reduce the number of parameters, which makes the computational structure attractive for learning and inference from limited labeled training data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323788/pdf/nihms-1673810.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1340654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Several imaging algorithms including patch-based image denoising, image time series recovery, and convolutional neural networks can be thought of as methods that exploit the manifold structure of signals. While the empirical performance of these algorithms is impressive, the understanding of recovery of the signals and functions that live on manifold is less understood. In this paper, we focus on the recovery of signals that live on a union of surfaces. In particular, we consider signals living on a union of smooth band-limited surfaces in high dimensions. We show that an exponential mapping transforms the data to a union of low-dimensional subspaces. Using this relation, we introduce a sampling theoretical framework for the recovery of smooth surfaces from few samples and the learning of functions living on smooth surfaces. The low-rank property of the features is used to determine the number of measurements needed to recover the surface. Moreover, the low-rank property of the features also provides an efficient approach, which resembles a neural network, for the local representation of multidimensional functions on the surface. The direct representation of such a function in high dimensions often suffers from the curse of dimensionality; the large number of parameters would translate to the need for extensive training data. The low-rank property of the features can significantly reduce the number of parameters, which makes the computational structure attractive for learning and inference from limited labeled training data.

高维曲面和函数的恢复:采样理论和神经网络链接。
几种成像算法,包括基于补丁的图像去噪、图像时间序列恢复和卷积神经网络,可以被认为是利用信号的流形结构的方法。虽然这些算法的经验性能令人印象深刻,但对存在于流形上的信号和函数的恢复的理解却很少。在这篇论文中,我们专注于恢复生活在曲面联合上的信号。特别是,我们考虑生活在高维光滑带限表面的并集上的信号。我们证明了指数映射将数据转换为低维子空间的并集。利用这种关系,我们引入了一个采样理论框架,用于从少量样本中恢复光滑表面,并学习光滑表面上的函数。特征的低秩特性用于确定恢复表面所需的测量次数。此外,特征的低秩特性也为表面上多维函数的局部表示提供了一种类似于神经网络的有效方法。这种函数在高维中的直接表示经常受到维度诅咒的影响;大量的参数将转化为对大量训练数据的需要。特征的低秩特性可以显著减少参数的数量,这使得计算结构对于从有限的标记训练数据中学习和推理具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信