Nitin Kamra, Yizhou Zhang, Sirisha Rambhatla, Chuizheng Meng, Yan Liu
{"title":"PolSIRD: Modeling Epidemic Spread Under Intervention Policies: Analyzing the First Wave of COVID-19 in the USA.","authors":"Nitin Kamra, Yizhou Zhang, Sirisha Rambhatla, Chuizheng Meng, Yan Liu","doi":"10.1007/s41666-021-00099-3","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemic spread in a population is traditionally modeled via compartmentalized models which represent the free evolution of disease in the absence of any intervention policies. In addition, these models assume full observability of disease cases and do not account for under-reporting. We present a mathematical model, namely PolSIRD, which accounts for the under-reporting by introducing an observation mechanism. It also captures the effects of intervention policies on the disease spread parameters by leveraging intervention policy data along with the reported disease cases. Furthermore, we allow our recurrent model to learn the initial hidden state of all compartments end-to-end along with other parameters via gradient-based training. We apply our model to the spread of the recent global outbreak of COVID-19 in the USA, where our model outperforms the methods employed by the CDC in predicting the spread. We also provide counterfactual simulations from our model to analyze the effect of lifting the intervention policies prematurely and our model correctly predicts the second wave of the epidemic.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00099-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Epidemic spread in a population is traditionally modeled via compartmentalized models which represent the free evolution of disease in the absence of any intervention policies. In addition, these models assume full observability of disease cases and do not account for under-reporting. We present a mathematical model, namely PolSIRD, which accounts for the under-reporting by introducing an observation mechanism. It also captures the effects of intervention policies on the disease spread parameters by leveraging intervention policy data along with the reported disease cases. Furthermore, we allow our recurrent model to learn the initial hidden state of all compartments end-to-end along with other parameters via gradient-based training. We apply our model to the spread of the recent global outbreak of COVID-19 in the USA, where our model outperforms the methods employed by the CDC in predicting the spread. We also provide counterfactual simulations from our model to analyze the effect of lifting the intervention policies prematurely and our model correctly predicts the second wave of the epidemic.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis