Trajectory Generation of FBG-Sensorized Needles for Insertions into Multi-Layer Tissue.

Dimitri A Lezcano, Iulian I Iordachita, Jin Seob Kim
{"title":"Trajectory Generation of FBG-Sensorized Needles for Insertions into Multi-Layer Tissue.","authors":"Dimitri A Lezcano,&nbsp;Iulian I Iordachita,&nbsp;Jin Seob Kim","doi":"10.1109/sensors47125.2020.9278807","DOIUrl":null,"url":null,"abstract":"<p><p>Several models incorporate needle shape prediction, however prediction in multi-layer tissue for complex needle shape remains an issue. In this work, we present a method for trajectory generation of flexible needles that allows for complex curvatures, extending upon a previous sensor-based model. This model combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod for shape-sensing. We evaluate the method's effectiveness in single- and double-layer isotropic tissue prediction. The results illustrate a valid trajectory generation method accounting for complex curvatures in flexible needles.</p>","PeriodicalId":74503,"journal":{"name":"Proceedings of IEEE Sensors. IEEE International Conference on Sensors","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/sensors47125.2020.9278807","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors. IEEE International Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sensors47125.2020.9278807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Several models incorporate needle shape prediction, however prediction in multi-layer tissue for complex needle shape remains an issue. In this work, we present a method for trajectory generation of flexible needles that allows for complex curvatures, extending upon a previous sensor-based model. This model combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod for shape-sensing. We evaluate the method's effectiveness in single- and double-layer isotropic tissue prediction. The results illustrate a valid trajectory generation method accounting for complex curvatures in flexible needles.

fbg传感针插入多层组织的轨迹生成。
一些模型纳入了针形预测,但在多层组织中对复杂针形的预测仍然是一个问题。在这项工作中,我们提出了一种允许复杂曲率的柔性针轨迹生成方法,扩展了以前基于传感器的模型。该模型结合了光纤布拉格光栅(FBG)传感器的曲率测量和用于形状传感的不可扩展弹性杆的力学。我们评估了该方法在单层和双层各向同性组织预测中的有效性。结果说明了一种有效的考虑挠性针复杂曲率的轨迹生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信