The progression of disorder-specific brain pattern expression in schizophrenia over 9 years.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Johannes Lieslehto, Erika Jääskeläinen, Vesa Kiviniemi, Marianne Haapea, Peter B Jones, Graham K Murray, Juha Veijola, Udo Dannlowski, Dominik Grotegerd, Susanne Meinert, Tim Hahn, Anne Ruef, Matti Isohanni, Peter Falkai, Jouko Miettunen, Dominic B Dwyer, Nikolaos Koutsouleris
{"title":"The progression of disorder-specific brain pattern expression in schizophrenia over 9 years.","authors":"Johannes Lieslehto,&nbsp;Erika Jääskeläinen,&nbsp;Vesa Kiviniemi,&nbsp;Marianne Haapea,&nbsp;Peter B Jones,&nbsp;Graham K Murray,&nbsp;Juha Veijola,&nbsp;Udo Dannlowski,&nbsp;Dominik Grotegerd,&nbsp;Susanne Meinert,&nbsp;Tim Hahn,&nbsp;Anne Ruef,&nbsp;Matti Isohanni,&nbsp;Peter Falkai,&nbsp;Jouko Miettunen,&nbsp;Dominic B Dwyer,&nbsp;Nikolaos Koutsouleris","doi":"10.1038/s41537-021-00157-0","DOIUrl":null,"url":null,"abstract":"<p><p>Age plays a crucial role in the performance of schizophrenia vs. controls (SZ-HC) neuroimaging-based machine learning (ML) models as the accuracy of identifying first-episode psychosis from controls is poor compared to chronic patients. Resolving whether this finding reflects longitudinal progression in a disorder-specific brain pattern or a systematic but non-disorder-specific deviation from a normal brain aging (BA) trajectory in schizophrenia would help the clinical translation of diagnostic ML models. We trained two ML models on structural MRI data: an SZ-HC model based on 70 schizophrenia patients and 74 controls and a BA model (based on 561 healthy individuals, age range = 66 years). We then investigated the two models' predictions in the naturalistic longitudinal Northern Finland Birth Cohort 1966 (NFBC1966) following 29 schizophrenia and 61 controls for nine years. The SZ-HC model's schizophrenia-specificity was further assessed by utilizing independent validation (62 schizophrenia, 95 controls) and depression samples (203 depression, 203 controls). We found better performance at the NFBC1966 follow-up (sensitivity = 75.9%, specificity = 83.6%) compared to the baseline (sensitivity = 58.6%, specificity = 86.9%). This finding resulted from progression in disorder-specific pattern expression in schizophrenia and was not explained by concomitant acceleration of brain aging. The disorder-specific pattern's progression reflected longitudinal changes in cognition, outcomes, and local brain changes, while BA captured treatment-related and global brain alterations. The SZ-HC model was also generalizable to independent schizophrenia validation samples but classified depression as control subjects. Our research underlines the importance of taking account of longitudinal progression in a disorder-specific pattern in schizophrenia when developing ML classifiers for different age groups.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41537-021-00157-0","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41537-021-00157-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

Age plays a crucial role in the performance of schizophrenia vs. controls (SZ-HC) neuroimaging-based machine learning (ML) models as the accuracy of identifying first-episode psychosis from controls is poor compared to chronic patients. Resolving whether this finding reflects longitudinal progression in a disorder-specific brain pattern or a systematic but non-disorder-specific deviation from a normal brain aging (BA) trajectory in schizophrenia would help the clinical translation of diagnostic ML models. We trained two ML models on structural MRI data: an SZ-HC model based on 70 schizophrenia patients and 74 controls and a BA model (based on 561 healthy individuals, age range = 66 years). We then investigated the two models' predictions in the naturalistic longitudinal Northern Finland Birth Cohort 1966 (NFBC1966) following 29 schizophrenia and 61 controls for nine years. The SZ-HC model's schizophrenia-specificity was further assessed by utilizing independent validation (62 schizophrenia, 95 controls) and depression samples (203 depression, 203 controls). We found better performance at the NFBC1966 follow-up (sensitivity = 75.9%, specificity = 83.6%) compared to the baseline (sensitivity = 58.6%, specificity = 86.9%). This finding resulted from progression in disorder-specific pattern expression in schizophrenia and was not explained by concomitant acceleration of brain aging. The disorder-specific pattern's progression reflected longitudinal changes in cognition, outcomes, and local brain changes, while BA captured treatment-related and global brain alterations. The SZ-HC model was also generalizable to independent schizophrenia validation samples but classified depression as control subjects. Our research underlines the importance of taking account of longitudinal progression in a disorder-specific pattern in schizophrenia when developing ML classifiers for different age groups.

Abstract Image

Abstract Image

Abstract Image

精神分裂症患者疾病特异性脑模式表达的进展。
年龄在精神分裂症与对照组(SZ-HC)神经成像机器学习(ML)模型的表现中起着至关重要的作用,因为与慢性患者相比,从对照组识别首发精神病的准确性较差。解决这一发现是否反映了精神分裂症中疾病特异性脑模式的纵向进展,或系统但非疾病特异性偏离正常脑衰老(BA)轨迹,将有助于诊断ML模型的临床翻译。我们在结构MRI数据上训练了两个ML模型:一个基于70名精神分裂症患者和74名对照的SZ-HC模型和一个基于561名健康个体的BA模型(年龄范围= 66岁)。然后,我们在1966年芬兰北部自然纵向出生队列(NFBC1966)中对29名精神分裂症患者和61名对照组进行了9年的研究,研究了这两个模型的预测。通过独立验证(62例精神分裂症,95例对照)和抑郁症样本(203例抑郁症,203例对照)进一步评估SZ-HC模型的精神分裂症特异性。我们发现,与基线(敏感性= 58.6%,特异性= 86.9%)相比,NFBC1966随访的表现更好(敏感性= 75.9%,特异性= 83.6%)。这一发现是由于精神分裂症中疾病特异性模式表达的进展,而不能用伴随的脑老化加速来解释。疾病特异性模式的进展反映了认知、结果和局部大脑变化的纵向变化,而BA捕获了与治疗相关的和整体的大脑变化。SZ-HC模型也可推广到独立的精神分裂症验证样本,但将抑郁症作为对照受试者。我们的研究强调了在为不同年龄组开发ML分类器时,考虑精神分裂症疾病特定模式的纵向进展的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信