Decision-support tools via mobile devices to improve quality of care in primary healthcare settings.

Smisha Agarwal, Claire Glenton, Tigest Tamrat, Nicholas Henschke, Nicola Maayan, Marita S Fønhus, Garrett L Mehl, Simon Lewin
{"title":"Decision-support tools via mobile devices to improve quality of care in primary healthcare settings.","authors":"Smisha Agarwal, Claire Glenton, Tigest Tamrat, Nicholas Henschke, Nicola Maayan, Marita S Fønhus, Garrett L Mehl, Simon Lewin","doi":"10.1002/14651858.CD012944.pub2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ubiquity of mobile devices has made it possible for clinical decision-support systems (CDSS) to become available to healthcare providers on handheld devices at the point-of-care, including in low- and middle-income countries. The use of CDSS by providers can potentially improve adherence to treatment protocols and patient outcomes. However, the evidence on the effect of the use of CDSS on mobile devices needs to be synthesized. This review was carried out to support a World Health Organization (WHO) guideline that aimed to inform investments on the use of decision-support tools on digital devices to strengthen primary healthcare.</p><p><strong>Objectives: </strong>To assess the effects of digital clinical decision-support systems (CDSS) accessible via mobile devices by primary healthcare providers in the context of primary care settings.</p><p><strong>Search methods: </strong>We searched CENTRAL, MEDLINE, Embase, Global Index Medicus, POPLINE, and two trial registries from 1 January 2000 to 9 October 2020. We conducted a grey literature search using mHealthevidence.org and issued a call for papers through popular digital health communities of practice. Finally, we conducted citation searches of included studies.</p><p><strong>Selection criteria: </strong>Study design: we included randomized trials, including full-text studies, conference abstracts, and unpublished data irrespective of publication status or language of publication.  Types of participants: we included studies of all cadres of healthcare providers, including lay health workers and other individuals (administrative, managerial, and supervisory staff) involved in the delivery of primary healthcare services using clinical decision-support tools; and studies of clients or patients receiving care from primary healthcare providers using digital decision-support tools. Types of interventions: we included studies comparing digital CDSS accessible via mobile devices with non-digital CDSS or no intervention, in the context of primary care. CDSS could include clinical protocols, checklists, and other job-aids which supported risk prioritization of patients. Mobile devices included mobile phones of any type (but not analogue landline telephones), as well as tablets, personal digital assistants, and smartphones. We excluded studies where digital CDSS were used on laptops or integrated with electronic medical records or other types of longitudinal tracking of clients.</p><p><strong>Data collection and analysis: </strong>A machine learning classifier that gave each record a probability score of being a randomized trial screened all search results. Two review authors screened titles and abstracts of studies with more than 10% probability of being a randomized trial, and one review author screened those with less than 10% probability of being a randomized trial. We followed standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care group. We used the GRADE approach to assess the certainty of the evidence for the most important outcomes.</p><p><strong>Main results: </strong>Eight randomized trials across varying healthcare contexts in the USA,. India, China, Guatemala, Ghana, and Kenya, met our inclusion criteria. A range of healthcare providers (facility and community-based, formally trained, and lay workers) used digital CDSS. Care was provided for the management of specific conditions such as cardiovascular disease, gastrointestinal risk assessment, and maternal and child health. The certainty of evidence ranged from very low to moderate, and we often downgraded evidence for risk of bias and imprecision. We are uncertain of the effect of this intervention on providers' adherence to recommended practice due to the very low certainty evidence (2 studies, 185 participants). The effect of the intervention on patients' and clients' health behaviours such as smoking and treatment adherence is mixed, with substantial variation across outcomes for similar types of behaviour (2 studies, 2262 participants). The intervention probably makes little or no difference to smoking rates among people at risk of cardiovascular disease but probably increases other types of desired behaviour among patients, such as adherence to treatment. The effect of the intervention on patients'/clients' health status and well-being  is also mixed (5 studies, 69,767 participants). It probably makes little or no difference to some types of health outcomes, but we are uncertain about other health outcomes, including maternal and neonatal deaths, due to very low-certainty evidence. The intervention may slightly improve patient or client acceptability and satisfaction (1 study, 187 participants). We found no studies that reported the time between the presentation of an illness and appropriate management, provider acceptability or satisfaction, resource use, or unintended consequences.</p><p><strong>Authors' conclusions: </strong>We are uncertain about the effectiveness of mobile phone-based decision-support tools on several outcomes, including adherence to recommended practice. None of the studies had a quality of care framework and focused only on specific health areas.   We need well-designed research that takes a systems lens to assess these issues.</p>","PeriodicalId":515753,"journal":{"name":"The Cochrane database of systematic reviews","volume":" ","pages":"CD012944"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/78/a5/CD012944.PMC8406991.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cochrane database of systematic reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/14651858.CD012944.pub2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The ubiquity of mobile devices has made it possible for clinical decision-support systems (CDSS) to become available to healthcare providers on handheld devices at the point-of-care, including in low- and middle-income countries. The use of CDSS by providers can potentially improve adherence to treatment protocols and patient outcomes. However, the evidence on the effect of the use of CDSS on mobile devices needs to be synthesized. This review was carried out to support a World Health Organization (WHO) guideline that aimed to inform investments on the use of decision-support tools on digital devices to strengthen primary healthcare.

Objectives: To assess the effects of digital clinical decision-support systems (CDSS) accessible via mobile devices by primary healthcare providers in the context of primary care settings.

Search methods: We searched CENTRAL, MEDLINE, Embase, Global Index Medicus, POPLINE, and two trial registries from 1 January 2000 to 9 October 2020. We conducted a grey literature search using mHealthevidence.org and issued a call for papers through popular digital health communities of practice. Finally, we conducted citation searches of included studies.

Selection criteria: Study design: we included randomized trials, including full-text studies, conference abstracts, and unpublished data irrespective of publication status or language of publication.  Types of participants: we included studies of all cadres of healthcare providers, including lay health workers and other individuals (administrative, managerial, and supervisory staff) involved in the delivery of primary healthcare services using clinical decision-support tools; and studies of clients or patients receiving care from primary healthcare providers using digital decision-support tools. Types of interventions: we included studies comparing digital CDSS accessible via mobile devices with non-digital CDSS or no intervention, in the context of primary care. CDSS could include clinical protocols, checklists, and other job-aids which supported risk prioritization of patients. Mobile devices included mobile phones of any type (but not analogue landline telephones), as well as tablets, personal digital assistants, and smartphones. We excluded studies where digital CDSS were used on laptops or integrated with electronic medical records or other types of longitudinal tracking of clients.

Data collection and analysis: A machine learning classifier that gave each record a probability score of being a randomized trial screened all search results. Two review authors screened titles and abstracts of studies with more than 10% probability of being a randomized trial, and one review author screened those with less than 10% probability of being a randomized trial. We followed standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care group. We used the GRADE approach to assess the certainty of the evidence for the most important outcomes.

Main results: Eight randomized trials across varying healthcare contexts in the USA,. India, China, Guatemala, Ghana, and Kenya, met our inclusion criteria. A range of healthcare providers (facility and community-based, formally trained, and lay workers) used digital CDSS. Care was provided for the management of specific conditions such as cardiovascular disease, gastrointestinal risk assessment, and maternal and child health. The certainty of evidence ranged from very low to moderate, and we often downgraded evidence for risk of bias and imprecision. We are uncertain of the effect of this intervention on providers' adherence to recommended practice due to the very low certainty evidence (2 studies, 185 participants). The effect of the intervention on patients' and clients' health behaviours such as smoking and treatment adherence is mixed, with substantial variation across outcomes for similar types of behaviour (2 studies, 2262 participants). The intervention probably makes little or no difference to smoking rates among people at risk of cardiovascular disease but probably increases other types of desired behaviour among patients, such as adherence to treatment. The effect of the intervention on patients'/clients' health status and well-being  is also mixed (5 studies, 69,767 participants). It probably makes little or no difference to some types of health outcomes, but we are uncertain about other health outcomes, including maternal and neonatal deaths, due to very low-certainty evidence. The intervention may slightly improve patient or client acceptability and satisfaction (1 study, 187 participants). We found no studies that reported the time between the presentation of an illness and appropriate management, provider acceptability or satisfaction, resource use, or unintended consequences.

Authors' conclusions: We are uncertain about the effectiveness of mobile phone-based decision-support tools on several outcomes, including adherence to recommended practice. None of the studies had a quality of care framework and focused only on specific health areas.   We need well-designed research that takes a systems lens to assess these issues.

Abstract Image

Abstract Image

Abstract Image

通过移动设备提供决策支持工具,以提高初级卫生保健机构的护理质量。
作者的结论是:我们不确定基于手机的决策支持工具在几个结果上的有效性,包括对推荐实践的坚持。没有一项研究具有护理质量框架,只关注特定的卫生领域。我们需要精心设计的研究,以系统的视角来评估这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信