An Active Learning Method for the Comparison of Agent-based Models.

Swapna Thorve, Zhihao Hu, Kiran Lakkaraju, Joshua Letchford, Anil Vullikanti, Achla Marathe, Samarth Swarup
{"title":"An Active Learning Method for the Comparison of Agent-based Models.","authors":"Swapna Thorve,&nbsp;Zhihao Hu,&nbsp;Kiran Lakkaraju,&nbsp;Joshua Letchford,&nbsp;Anil Vullikanti,&nbsp;Achla Marathe,&nbsp;Samarth Swarup","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a methodology for comparing two or more agent-based models that are developed for the same domain, but may differ in the particular data sets (e.g., geographical regions) to which they are applied, and in the structure of the model. Our approach is to learn a response surface in the common parameter space of the models and compare the regions corresponding to qualitatively different behaviors in the models. As an example, we develop an active learning algorithm to learn phase transition boundaries in contagion processes in order to compare two agent-based models of rooftop solar panel adoption.</p>","PeriodicalId":93357,"journal":{"name":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","volume":"2020 ","pages":"1377-1385"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302187/pdf/nihms-1639215.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a methodology for comparing two or more agent-based models that are developed for the same domain, but may differ in the particular data sets (e.g., geographical regions) to which they are applied, and in the structure of the model. Our approach is to learn a response surface in the common parameter space of the models and compare the regions corresponding to qualitatively different behaviors in the models. As an example, we develop an active learning algorithm to learn phase transition boundaries in contagion processes in order to compare two agent-based models of rooftop solar panel adoption.

基于智能体模型比较的主动学习方法。
我们开发了一种方法,用于比较为同一领域开发的两个或多个基于代理的模型,但它们在应用的特定数据集(例如,地理区域)和模型结构中可能不同。我们的方法是在模型的公共参数空间中学习一个响应面,并比较模型中质量不同行为对应的区域。作为一个例子,我们开发了一种主动学习算法来学习传染过程中的相变边界,以便比较屋顶太阳能电池板采用的两个基于智能体的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信