Network Modeling in Biology: Statistical Methods for Gene and Brain Networks.

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY
Y X Rachel Wang, Lexin Li, Jingyi Jessica Li, Haiyan Huang
{"title":"Network Modeling in Biology: Statistical Methods for Gene and Brain Networks.","authors":"Y X Rachel Wang, Lexin Li, Jingyi Jessica Li, Haiyan Huang","doi":"10.1214/20-sts792","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of network data in many different domains has offered researchers new insight into the problem of modeling complex systems and propelled the development of numerous innovative statistical methodologies and computational tools. In this paper, we primarily focus on two types of biological networks, gene networks and brain networks, where statistical network modeling has found both fruitful and challenging applications. Unlike other network examples such as social networks where network edges can be directly observed, both gene and brain networks require careful estimation of edges using covariates as a first step. We provide a discussion on existing statistical and computational methods for edge esitimation and subsequent statistical inference problems in these two types of biological networks.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"36 1","pages":"89-108"},"PeriodicalIF":3.9000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296984/pdf/nihms-1636819.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-sts792","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of network data in many different domains has offered researchers new insight into the problem of modeling complex systems and propelled the development of numerous innovative statistical methodologies and computational tools. In this paper, we primarily focus on two types of biological networks, gene networks and brain networks, where statistical network modeling has found both fruitful and challenging applications. Unlike other network examples such as social networks where network edges can be directly observed, both gene and brain networks require careful estimation of edges using covariates as a first step. We provide a discussion on existing statistical and computational methods for edge esitimation and subsequent statistical inference problems in these two types of biological networks.

生物学中的网络建模:基因和大脑网络的统计方法》。
网络数据在许多不同领域的兴起,为研究人员提供了对复杂系统建模问题的新见解,并推动了众多创新统计方法和计算工具的发展。在本文中,我们主要关注两类生物网络--基因网络和大脑网络,在这两类网络中,统计网络建模的应用既富有成果,又充满挑战。与社交网络等可以直接观察到网络边缘的其他网络实例不同,基因网络和大脑网络都需要首先使用协变量对边缘进行仔细估计。我们将讨论这两类生物网络中边缘估计和后续统计推断问题的现有统计和计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信