Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease.

Cerebral cortex communications Pub Date : 2021-05-28 eCollection Date: 2021-01-01 DOI:10.1093/texcom/tgab036
Josien Levenga, Helen Wong, Ryan Milstead, Lauren LaPlante, Charles A Hoeffer
{"title":"Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease.","authors":"Josien Levenga,&nbsp;Helen Wong,&nbsp;Ryan Milstead,&nbsp;Lauren LaPlante,&nbsp;Charles A Hoeffer","doi":"10.1093/texcom/tgab036","DOIUrl":null,"url":null,"abstract":"<p><p>Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under <i>Akt</i> deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223503/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgab036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under Akt deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.

Abstract Image

Abstract Image

Abstract Image

大脑中AKT亚型的免疫组织学检查:细胞类型特异性可能是AKT在复杂脑部疾病和神经系统疾病中作用的基础。
蛋白激酶B (PKB/AKT)是参与许多神经生物学过程的中枢激酶。AKT在大脑中以AKT1、AKT2和AKT3三种亚型表达。以往的研究表明,同种异构体在神经功能中具有特异性作用,但很少有研究在细胞水平上检测AKT同种异构体的表达。在这项研究中,我们使用组织学、免疫染色和遗传学相结合的方法来表征人类和小鼠大脑中AKT亚型的细胞类型特异性表达。在小鼠中,我们发现AKT1是最广泛表达的亚型,在兴奋性神经元中表达,而在γ -氨基丁酸能间神经元和小胶质细胞中唯一可检测到的AKT亚型。相比之下,我们发现AKT2是唯一在星形胶质细胞中表达的亚型,在其他神经细胞类型中未检测到。我们发现AKT3与AKT1一起在兴奋性神经元中表达,但在树突状室中的表达水平高于AKT1。我们将我们的分析扩展到人脑组织,并发现了类似的结果。利用基因缺失方法,我们还发现,在AKT缺乏的条件下,限制AKT亚型表达的细胞决定因素保持完整。由于AKT信号与许多神经系统疾病有关,因此对细胞特异性异构体表达的更深入了解可以改善涉及AKT的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信