{"title":"Unusual chromosome numbers and polyploidy in invasive fire ant populations.","authors":"Takahiro Murakami, Carolina Paris, Mónica Chirino, Chifune Sasa, Hironori Sakamoto, Seigo Higashi, Kazuki Sato","doi":"10.1007/s10709-021-00128-4","DOIUrl":null,"url":null,"abstract":"<p><p>Fire ants (Solenopsis invicta Buren in J Ga Entomol Soc 7:1-26, 1972), an invasive alien ant species, first spread from South America to the United States in the 1930s, the southern part of the United States by the end of the twentieth century, Oceania, Taiwan, and China in the twenty-first century, and finally to Japan and South Korea in 2017. As these ants have significant negative economic, human health, and environmental impacts, the purpose of this research was to accumulate cytogenetic information regarding fire ants and provide basic data for developing management strategies for their control. Fire ants were collected from invasive populations from Taiwan, Florida (USA), and Buenos Aires (Argentina), and a native population from Puerto Iguazu (Argentina), their point of origination, and analyzed with regard to chromosome number, morphology, and polyploidy, silver-stained nucleolar organizer regions (Ag-NORs), and 18S rDNA and telomere fluorescence in situ hybridization (FISH). The results showed that (1) fire ants from invaded populations differed in chromosome morphology compared to those from native populations; (2) the Florida and Taiwanese fire ant populations evinced greater variability in chromosome numbers and polyploidy variations; (3) the Taiwanese population exhibited significantly increased Ag-NOR signals in interphase cells, with signal number significantly positively correlating with distance from native populations; and (4) substantial diversity of signals was also apparent following 18S rDNA and telomere FISH analyses. Variation in these characteristics were hypothesized to be due to (1) the effect of hybridizations and interbreeding between closely related species or genetically distant populations, and (2) the potential effect of large amounts of insecticides sprayed for pest control.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"149 4","pages":"203-215"},"PeriodicalIF":1.3000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10709-021-00128-4","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-021-00128-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2
Abstract
Fire ants (Solenopsis invicta Buren in J Ga Entomol Soc 7:1-26, 1972), an invasive alien ant species, first spread from South America to the United States in the 1930s, the southern part of the United States by the end of the twentieth century, Oceania, Taiwan, and China in the twenty-first century, and finally to Japan and South Korea in 2017. As these ants have significant negative economic, human health, and environmental impacts, the purpose of this research was to accumulate cytogenetic information regarding fire ants and provide basic data for developing management strategies for their control. Fire ants were collected from invasive populations from Taiwan, Florida (USA), and Buenos Aires (Argentina), and a native population from Puerto Iguazu (Argentina), their point of origination, and analyzed with regard to chromosome number, morphology, and polyploidy, silver-stained nucleolar organizer regions (Ag-NORs), and 18S rDNA and telomere fluorescence in situ hybridization (FISH). The results showed that (1) fire ants from invaded populations differed in chromosome morphology compared to those from native populations; (2) the Florida and Taiwanese fire ant populations evinced greater variability in chromosome numbers and polyploidy variations; (3) the Taiwanese population exhibited significantly increased Ag-NOR signals in interphase cells, with signal number significantly positively correlating with distance from native populations; and (4) substantial diversity of signals was also apparent following 18S rDNA and telomere FISH analyses. Variation in these characteristics were hypothesized to be due to (1) the effect of hybridizations and interbreeding between closely related species or genetically distant populations, and (2) the potential effect of large amounts of insecticides sprayed for pest control.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.