Alexander Varzari, Igor V Deyneko, Elena Tudor, Harald Grallert, Thomas Illig
{"title":"Synergistic effect of genetic polymorphisms in <i>TLR6</i> and <i>TLR10</i> genes on the risk of pulmonary tuberculosis in a Moldavian population.","authors":"Alexander Varzari, Igor V Deyneko, Elena Tudor, Harald Grallert, Thomas Illig","doi":"10.1177/17534259211029996","DOIUrl":null,"url":null,"abstract":"<p><p>Polymorphisms in genes that control immune function and regulation may influence susceptibility to pulmonary tuberculosis (TB). In this study, 14 polymorphisms in 12 key genes involved in the immune response (<i>VDR</i>, <i>MR1</i>, <i>TLR1</i>, <i>TLR2</i>, <i>TLR10</i>, <i>SLC11A1</i>, <i>IL1B</i>, <i>IL10</i>, <i>IFNG</i>, <i>TNF</i>, <i>IRAK1</i>, and <i>FOXP3</i>) were tested for their association with pulmonary TB in 271 patients with TB and 251 community-matched controls from the Republic of Moldova. In addition, gene-gene interactions involved in TB susceptibility were analyzed for a total of 43 genetic loci. Single nucleotide polymorphism (SNP) analysis revealed a nominal association between <i>TNF</i> rs1800629 and pulmonary TB (Fisher exact test <i>P</i> = 0.01843). In the pairwise interaction analysis, the combination of the genotypes <i>TLR6</i> rs5743810 GA and <i>TLR10</i> rs11096957 GT was significantly associated with an increased genetic risk of pulmonary TB (OR = 2.48, 95% CI = 1.62-3.85; Fisher exact test <i>P</i> value = 1.5 × 10<sup>-5</sup>, significant after Bonferroni correction). In conclusion, the <i>TLR6</i> rs5743810 and <i>TLR10</i> rs11096957 two-locus interaction confers a significantly higher risk for pulmonary TB; due to its high frequency in the population, this SNP combination may serve as a novel biomarker for predicting TB susceptibility.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/17534259211029996","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259211029996","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Polymorphisms in genes that control immune function and regulation may influence susceptibility to pulmonary tuberculosis (TB). In this study, 14 polymorphisms in 12 key genes involved in the immune response (VDR, MR1, TLR1, TLR2, TLR10, SLC11A1, IL1B, IL10, IFNG, TNF, IRAK1, and FOXP3) were tested for their association with pulmonary TB in 271 patients with TB and 251 community-matched controls from the Republic of Moldova. In addition, gene-gene interactions involved in TB susceptibility were analyzed for a total of 43 genetic loci. Single nucleotide polymorphism (SNP) analysis revealed a nominal association between TNF rs1800629 and pulmonary TB (Fisher exact test P = 0.01843). In the pairwise interaction analysis, the combination of the genotypes TLR6 rs5743810 GA and TLR10 rs11096957 GT was significantly associated with an increased genetic risk of pulmonary TB (OR = 2.48, 95% CI = 1.62-3.85; Fisher exact test P value = 1.5 × 10-5, significant after Bonferroni correction). In conclusion, the TLR6 rs5743810 and TLR10 rs11096957 two-locus interaction confers a significantly higher risk for pulmonary TB; due to its high frequency in the population, this SNP combination may serve as a novel biomarker for predicting TB susceptibility.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.