{"title":"Knockdown of lncRNA LUCAT1 attenuates sepsis‑induced myocardial cell injury by sponging miR-642a.","authors":"Jing Wang, Shaobin Xin, Rui Yang, Jiawei Jiang, Youjie Qiao","doi":"10.1007/s00335-021-09890-4","DOIUrl":null,"url":null,"abstract":"<p><p>The heart is one of the most common organs involved in sepsis-induced organ dysfunction and about 50% septic patients complicated with myocardial injury. So far, the molecular mechanisms underlying sepsis-induced cardiac damage remain unclear. In this study we aimed to evaluate the effect of miR-642a on sepsis-induced cardiac injury in vitro and explore the possible lncRNA-microRNA mechanism. We first downloaded GSE101639 to identify differentially expressed genes (DEGs) in sepsis. The expression of miR-642a in LPS-induced H9C2 cells was detected by qRT-PCR. MTT assay, cell migration, flow cytometry analysis, ELISA, qRT-PCR and Western blotting analysis were applied to evaluating the effect of miR-642a mimic on LPS-induced H9C2 cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results showed miR-642a expression was decreased in septic patients and LPS-induced H9C2 cells. Besides, MiR-642a mimic promoted cell viability and migration, inhibited cell apoptosis of LPS-induced H9C2 cells. Bioinformatics analysis showed miR-642a directly targets with 3'-UTR of ROCK1. Moreover, LUCAT1 regulated ROCK1 expression act as a competing endogenous RNA (ceRNA) for miR-642a. Our data demonstrated that lncRNA LUCAT1 could function via sponging miR-642a to regulate ROCK1 expression in LPS-induced H9C2 cells. And knockdown of lncRNA LUCAT1 could suppress LPS-induced cardiac injury in vitro.</p>","PeriodicalId":412165,"journal":{"name":"Mammalian genome : official journal of the International Mammalian Genome Society","volume":" ","pages":"457-465"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00335-021-09890-4","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian genome : official journal of the International Mammalian Genome Society","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-021-09890-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The heart is one of the most common organs involved in sepsis-induced organ dysfunction and about 50% septic patients complicated with myocardial injury. So far, the molecular mechanisms underlying sepsis-induced cardiac damage remain unclear. In this study we aimed to evaluate the effect of miR-642a on sepsis-induced cardiac injury in vitro and explore the possible lncRNA-microRNA mechanism. We first downloaded GSE101639 to identify differentially expressed genes (DEGs) in sepsis. The expression of miR-642a in LPS-induced H9C2 cells was detected by qRT-PCR. MTT assay, cell migration, flow cytometry analysis, ELISA, qRT-PCR and Western blotting analysis were applied to evaluating the effect of miR-642a mimic on LPS-induced H9C2 cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results showed miR-642a expression was decreased in septic patients and LPS-induced H9C2 cells. Besides, MiR-642a mimic promoted cell viability and migration, inhibited cell apoptosis of LPS-induced H9C2 cells. Bioinformatics analysis showed miR-642a directly targets with 3'-UTR of ROCK1. Moreover, LUCAT1 regulated ROCK1 expression act as a competing endogenous RNA (ceRNA) for miR-642a. Our data demonstrated that lncRNA LUCAT1 could function via sponging miR-642a to regulate ROCK1 expression in LPS-induced H9C2 cells. And knockdown of lncRNA LUCAT1 could suppress LPS-induced cardiac injury in vitro.