Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches.

In Silico Pharmacology Pub Date : 2021-06-25 eCollection Date: 2021-01-01 DOI:10.1007/s40203-021-00100-2
Temitope Isaac Adelusi, Misbaudeen Abdul-Hammed, Mukhtar Oluwaseun Idris, Oyedele Qudus Kehinde, Ibrahim Damilare Boyenle, Ukachi Chiamaka Divine, Ibrahim Olaide Adedotun, Ajayi Ayodeji Folorunsho, Oladipo Elijah Kolawole
{"title":"Exploring the inhibitory potentials of <i>Momordica charantia</i> bioactive compounds against Keap1-Kelch protein using computational approaches.","authors":"Temitope Isaac Adelusi,&nbsp;Misbaudeen Abdul-Hammed,&nbsp;Mukhtar Oluwaseun Idris,&nbsp;Oyedele Qudus Kehinde,&nbsp;Ibrahim Damilare Boyenle,&nbsp;Ukachi Chiamaka Divine,&nbsp;Ibrahim Olaide Adedotun,&nbsp;Ajayi Ayodeji Folorunsho,&nbsp;Oladipo Elijah Kolawole","doi":"10.1007/s40203-021-00100-2","DOIUrl":null,"url":null,"abstract":"<p><p>The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of <i>Momordica charantia's</i> bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of <i>Momordica charantia</i>, catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have - 9.2 kJ/mol and - 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-021-00100-2.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":" ","pages":"39"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40203-021-00100-2","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-021-00100-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia's bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of Momordica charantia, catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have - 9.2 kJ/mol and - 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-021-00100-2.

Abstract Image

Abstract Image

Abstract Image

利用计算方法探索苦瓜生物活性化合物对Keap1-Kelch蛋白的抑制潜力。
寻找Keap1抑制剂作为潜在的Nrf2激活剂是一种提高人类细胞环境抗氧化状态的方法。在本研究中,我们利用计算机方法研究了苦瓜(Momordica charantia)生物活性化合物的Keap1-kelch抑制电位,以预测其Nrf2激活电位。ADMET分析,物理化学性质,分子对接,分子动力学和分子力学-泊松玻尔兹曼表面积(g_MMPBSA)自由能计算研究被执行以实现我们的目标。从苦瓜(Momordica charantia)的所有生物活性化合物中,根据其ADMET谱、理化性质和分子对接分析筛选出儿茶素(catechin, CAT)和绿原酸(chlorogenic acid, CGA)。CAT和CGA与Keap1 kelch结构域的分子对接研究表明,它们的结合能分别为- 9.2 kJ/mol和- 9.1 kJ/mol,其中CAT与Keap1有4个氢键相互作用,CGA与Keap1有3个氢键相互作用。30 ns分子动力学模拟后的分析表明,CAT和CGA都是稳定的,尽管在Keap1的kelch口袋处有很小的构象改变。最后,MMPBSA计算了每种氨基酸与CAT和CGA相互作用的吉布斯自由能,发现CAT的总结合能高于CGA。因此,Keap1的抑制能力以及Keap1 Kelch结构域的CAT和CGA的分子动力学特征表明,Keap1可能具有Nrf2信号激活能力。补充信息:在线版本提供补充资料,网址为10.1007/s40203-021-00100-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信