{"title":"Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT.","authors":"Faith Wavinya Mutinda, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki","doi":"10.1055/s-0041-1731390","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Semantic textual similarity (STS) captures the degree of semantic similarity between texts. It plays an important role in many natural language processing applications such as text summarization, question answering, machine translation, information retrieval, dialog systems, plagiarism detection, and query ranking. STS has been widely studied in the general English domain. However, there exists few resources for STS tasks in the clinical domain and in languages other than English, such as Japanese.</p><p><strong>Objective: </strong>The objective of this study is to capture semantic similarity between Japanese clinical texts (Japanese clinical STS) by creating a Japanese dataset that is publicly available.</p><p><strong>Materials: </strong>We created two datasets for Japanese clinical STS: (1) Japanese case reports (CR dataset) and (2) Japanese electronic medical records (EMR dataset). The CR dataset was created from publicly available case reports extracted from the CiNii database. The EMR dataset was created from Japanese electronic medical records.</p><p><strong>Methods: </strong>We used an approach based on bidirectional encoder representations from transformers (BERT) to capture the semantic similarity between the clinical domain texts. BERT is a popular approach for transfer learning and has been proven to be effective in achieving high accuracy for small datasets. We implemented two Japanese pretrained BERT models: a general Japanese BERT and a clinical Japanese BERT. The general Japanese BERT is pretrained on Japanese Wikipedia texts while the clinical Japanese BERT is pretrained on Japanese clinical texts.</p><p><strong>Results: </strong>The BERT models performed well in capturing semantic similarity in our datasets. The general Japanese BERT outperformed the clinical Japanese BERT and achieved a high correlation with human score (0.904 in the CR dataset and 0.875 in the EMR dataset). It was unexpected that the general Japanese BERT outperformed the clinical Japanese BERT on clinical domain dataset. This could be due to the fact that the general Japanese BERT is pretrained on a wide range of texts compared with the clinical Japanese BERT.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"60 S 01","pages":"e56-e64"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/46/10-1055-s-0041-1731390.PMC8294940.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0041-1731390","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Semantic textual similarity (STS) captures the degree of semantic similarity between texts. It plays an important role in many natural language processing applications such as text summarization, question answering, machine translation, information retrieval, dialog systems, plagiarism detection, and query ranking. STS has been widely studied in the general English domain. However, there exists few resources for STS tasks in the clinical domain and in languages other than English, such as Japanese.
Objective: The objective of this study is to capture semantic similarity between Japanese clinical texts (Japanese clinical STS) by creating a Japanese dataset that is publicly available.
Materials: We created two datasets for Japanese clinical STS: (1) Japanese case reports (CR dataset) and (2) Japanese electronic medical records (EMR dataset). The CR dataset was created from publicly available case reports extracted from the CiNii database. The EMR dataset was created from Japanese electronic medical records.
Methods: We used an approach based on bidirectional encoder representations from transformers (BERT) to capture the semantic similarity between the clinical domain texts. BERT is a popular approach for transfer learning and has been proven to be effective in achieving high accuracy for small datasets. We implemented two Japanese pretrained BERT models: a general Japanese BERT and a clinical Japanese BERT. The general Japanese BERT is pretrained on Japanese Wikipedia texts while the clinical Japanese BERT is pretrained on Japanese clinical texts.
Results: The BERT models performed well in capturing semantic similarity in our datasets. The general Japanese BERT outperformed the clinical Japanese BERT and achieved a high correlation with human score (0.904 in the CR dataset and 0.875 in the EMR dataset). It was unexpected that the general Japanese BERT outperformed the clinical Japanese BERT on clinical domain dataset. This could be due to the fact that the general Japanese BERT is pretrained on a wide range of texts compared with the clinical Japanese BERT.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.