Analysing electrocardiographic traits and predicting cardiac risk in UK biobank.

IF 1.4 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
JRSM Cardiovascular Disease Pub Date : 2021-06-12 eCollection Date: 2021-01-01 DOI:10.1177/20480040211023664
Julia Ramírez, Stefan van Duijvenboden, William J Young, Michele Orini, Aled R Jones, Pier D Lambiase, Patricia B Munroe, Andrew Tinker
{"title":"Analysing electrocardiographic traits and predicting cardiac risk in UK biobank.","authors":"Julia Ramírez,&nbsp;Stefan van Duijvenboden,&nbsp;William J Young,&nbsp;Michele Orini,&nbsp;Aled R Jones,&nbsp;Pier D Lambiase,&nbsp;Patricia B Munroe,&nbsp;Andrew Tinker","doi":"10.1177/20480040211023664","DOIUrl":null,"url":null,"abstract":"<p><p>The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information.</p>","PeriodicalId":30457,"journal":{"name":"JRSM Cardiovascular Disease","volume":"10 ","pages":"20480040211023664"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/20480040211023664","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JRSM Cardiovascular Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20480040211023664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information.

Abstract Image

Abstract Image

Abstract Image

英国生物银行心电图特征分析及心脏风险预测。
心电图(ECG)是反映心脏兴奋性和疾病的常用临床工具。许多参数都可以测量,并且随着方法的改进,现在可以以自动化的方式精确和规模化地量化。此外,这些测量可以遗传,因此全基因组关联研究为基础的生物学机制提供了信息。在这篇综述中,我们描述了我们如何利用英国生物银行的资源来开展这项工作。特别是,我们专注于一项子研究,该研究独特地描述了对运动的反应,并附带了遗传信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JRSM Cardiovascular Disease
JRSM Cardiovascular Disease CARDIAC & CARDIOVASCULAR SYSTEMS-
自引率
6.20%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信