Single enzyme RT-PCR of full-length ribosomal RNA.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2020-12-14 eCollection Date: 2020-01-01 DOI:10.1093/synbio/ysaa028
Michael J Hammerling, Danielle J Yoesep, Michael C Jewett
{"title":"Single enzyme RT-PCR of full-length ribosomal RNA.","authors":"Michael J Hammerling, Danielle J Yoesep, Michael C Jewett","doi":"10.1093/synbio/ysaa028","DOIUrl":null,"url":null,"abstract":"<p><p>The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete <i>Escherichia coli</i> 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa028"},"PeriodicalIF":2.6000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/05/df/ysaa028.PMC7772474.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaa028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete Escherichia coli 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.

Abstract Image

Abstract Image

Abstract Image

全长核糖体 RNA 的单酶 RT-PCR。
核糖体是一种由核糖核酸和蛋白质组成的双亚基大分子机器,可将α-氨基酸聚合成多肽。对核糖体 RNA(rRNA)进行工程化的努力加深了我们对分子翻译的理解,并提供了通过创造具有改变特性的核糖体来扩展生命化学的机会。为了实现这些目标,分别组成 30S 小亚基和 50S 大亚基的整个 16S 和 23S rRNA 的反转录 PCR(RT-PCR)对于分离所需的表型非常重要。然而,由于存在大量二级结构和转录后修饰,rRNA 的反转录具有挑战性。一个关键的挑战是,现有的 RT-PCR 商业试剂盒所依赖的反转录酶缺乏许多商业 DNA 聚合酶所具有的极高热稳定性和加工性,这可能导致在具有挑战性的模板上表现不佳。在这里,我们开发了采用合成恒温反转录酶(RTX)的方法,以实现并优化完整大肠杆菌 16S 和 23S rRNA 的 RT-PCR。我们还描述了 RTX 在遍历 23S rRNA 的各种转录后修饰时的错误率。我们预计,这项工作将有助于研究和鉴定许多天然存在的长 RNA,并为合成生物学设计翻译装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信