Salvatore Dimonte, Muhammed Babakir-Mina, Taib Hama-Soor, Salar Ali
{"title":"Genetic Variation and Evolution of the 2019 Novel Coronavirus.","authors":"Salvatore Dimonte, Muhammed Babakir-Mina, Taib Hama-Soor, Salar Ali","doi":"10.1159/000513530","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>SARS-CoV-2 is a new type of coronavirus causing a pandemic severe acute respiratory syndrome (SARS-2). Coronaviruses are very diverting genetically and mutate so often periodically. The natural selection of viral mutations may cause host infection selectivity and infectivity.</p><p><strong>Methods: </strong>This study was aimed to indicate the diversity between human and animal coronaviruses through finding the rate of mutation in each of the spike, nucleocapsid, envelope, and membrane proteins.</p><p><strong>Results: </strong>The mutation rate is abundant in all 4 structural proteins. The most number of statistically significant amino acid mutations were found in spike receptor-binding domain (RBD) which may be because it is responsible for a corresponding receptor binding in a broad range of hosts and host selectivity to infect. Among 17 previously known amino acids which are important for binding of spike to angiotensin-converting enzyme 2 (ACE2) receptor, all of them are conservative among human coronaviruses, but only 3 of them significantly are mutated in animal coronaviruses. A single amino acid aspartate-454, that causes dissociation of the RBD of the spike and ACE2, and F486 which gives the strength of binding with ACE2 remain intact in all coronaviruses.</p><p><strong>Discussion/conclusion: </strong>Observations of this study provided evidence of the genetic diversity and rapid evolution of SARS-CoV-2 as well as other human and animal coronaviruses.</p>","PeriodicalId":49650,"journal":{"name":"Public Health Genomics","volume":" ","pages":"54-66"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000513530","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Health Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000513530","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 9
Abstract
Introduction: SARS-CoV-2 is a new type of coronavirus causing a pandemic severe acute respiratory syndrome (SARS-2). Coronaviruses are very diverting genetically and mutate so often periodically. The natural selection of viral mutations may cause host infection selectivity and infectivity.
Methods: This study was aimed to indicate the diversity between human and animal coronaviruses through finding the rate of mutation in each of the spike, nucleocapsid, envelope, and membrane proteins.
Results: The mutation rate is abundant in all 4 structural proteins. The most number of statistically significant amino acid mutations were found in spike receptor-binding domain (RBD) which may be because it is responsible for a corresponding receptor binding in a broad range of hosts and host selectivity to infect. Among 17 previously known amino acids which are important for binding of spike to angiotensin-converting enzyme 2 (ACE2) receptor, all of them are conservative among human coronaviruses, but only 3 of them significantly are mutated in animal coronaviruses. A single amino acid aspartate-454, that causes dissociation of the RBD of the spike and ACE2, and F486 which gives the strength of binding with ACE2 remain intact in all coronaviruses.
Discussion/conclusion: Observations of this study provided evidence of the genetic diversity and rapid evolution of SARS-CoV-2 as well as other human and animal coronaviruses.
期刊介绍:
''Public Health Genomics'' is the leading international journal focusing on the timely translation of genome-based knowledge and technologies into public health, health policies, and healthcare as a whole. This peer-reviewed journal is a bimonthly forum featuring original papers, reviews, short communications, and policy statements. It is supplemented by topic-specific issues providing a comprehensive, holistic and ''all-inclusive'' picture of the chosen subject. Multidisciplinary in scope, it combines theoretical and empirical work from a range of disciplines, notably public health, molecular and medical sciences, the humanities and social sciences. In so doing, it also takes into account rapid scientific advances from fields such as systems biology, microbiomics, epigenomics or information and communication technologies as well as the hight potential of ''big data'' for public health.