Predicting Kidney Transplant Survival using Multiple Feature Representations for HLAs.

Mohammadreza Nemati, Haonan Zhang, Michael Sloma, Dulat Bekbolsynov, Hong Wang, Stanislaw Stepkowski, Kevin S Xu
{"title":"Predicting Kidney Transplant Survival using Multiple Feature Representations for HLAs.","authors":"Mohammadreza Nemati,&nbsp;Haonan Zhang,&nbsp;Michael Sloma,&nbsp;Dulat Bekbolsynov,&nbsp;Hong Wang,&nbsp;Stanislaw Stepkowski,&nbsp;Kevin S Xu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney transplantation can significantly enhance living standards for people suffering from end-stage renal disease. A significant factor that affects graft survival time (the time until the transplant fails and the patient requires another transplant) for kidney transplantation is the compatibility of the Human Leukocyte Antigens (HLAs) between the donor and recipient. In this paper, we propose new biologically-relevant feature representations for incorporating HLA information into machine learning-based survival analysis algorithms. We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find that they improve prediction accuracy by about 1%, modest at the patient level but potentially significant at a societal level. Accurate prediction of survival times can improve transplant survival outcomes, enabling better allocation of donors to recipients and reducing the number of re-transplants due to graft failure with poorly matched donors.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12721 ","pages":"51-60"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224462/pdf/nihms-1714702.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kidney transplantation can significantly enhance living standards for people suffering from end-stage renal disease. A significant factor that affects graft survival time (the time until the transplant fails and the patient requires another transplant) for kidney transplantation is the compatibility of the Human Leukocyte Antigens (HLAs) between the donor and recipient. In this paper, we propose new biologically-relevant feature representations for incorporating HLA information into machine learning-based survival analysis algorithms. We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find that they improve prediction accuracy by about 1%, modest at the patient level but potentially significant at a societal level. Accurate prediction of survival times can improve transplant survival outcomes, enabling better allocation of donors to recipients and reducing the number of re-transplants due to graft failure with poorly matched donors.

利用hla的多特征表示预测肾移植生存。
肾移植可以显著提高终末期肾病患者的生活水平。肾移植中影响移植物存活时间(移植失败和患者需要另一次移植的时间)的一个重要因素是供体和受体之间的人类白细胞抗原(hla)的相容性。在本文中,我们提出了将HLA信息纳入基于机器学习的生存分析算法的新的生物学相关特征表示。我们在超过100,000例移植的数据库中评估了我们提出的HLA特征表示,发现它们将预测准确性提高了约1%,在患者水平上是适度的,但在社会水平上可能具有重要意义。准确预测存活时间可以改善移植存活结果,使供体更好地分配给受者,并减少由于供体匹配不良导致移植失败而再次移植的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信