An Automatic Biopsy Needle Detection and Segmentation on Ultrasound Images Using a Convolutional Neural Network.

IF 2.5 4区 医学 Q1 ACOUSTICS
Ultrasonic Imaging Pub Date : 2021-09-01 Epub Date: 2021-06-28 DOI:10.1177/01617346211025267
Agata Wijata, Jacek Andrzejewski, Bartłomiej Pyciński
{"title":"An Automatic Biopsy Needle Detection and Segmentation on Ultrasound Images Using a Convolutional Neural Network.","authors":"Agata Wijata,&nbsp;Jacek Andrzejewski,&nbsp;Bartłomiej Pyciński","doi":"10.1177/01617346211025267","DOIUrl":null,"url":null,"abstract":"<p><p>Needle visualization in the ultrasound image is essential to successfully perform the ultrasound-guided core needle biopsy. Automatic needle detection can significantly reduce the procedure time, false-negative rate, and highly improve the diagnosis. In this paper, we present a CNN-based, fully automatic method for detection of core needle in 2D ultrasound images. Adaptive moment estimation optimizer is proposed as CNN architecture. Radon transform is applied to locate the needle. The network's model was trained and tested on the total of 619 2D images from 91 cases of breast cancer. The model has achieved an average weighted intersection over union (the weighted Jaccard Index) of 0.986, F1 Score of 0.768, and angle RMSE of 3.73°. The obtained results exceed the other solutions by at least 0.27 and 7° in case of F1 score and angle RMSE, respectively. Finally, the needle is detected in a single frame averagely in 21.6 ms on a modern PC.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/01617346211025267","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346211025267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 5

Abstract

Needle visualization in the ultrasound image is essential to successfully perform the ultrasound-guided core needle biopsy. Automatic needle detection can significantly reduce the procedure time, false-negative rate, and highly improve the diagnosis. In this paper, we present a CNN-based, fully automatic method for detection of core needle in 2D ultrasound images. Adaptive moment estimation optimizer is proposed as CNN architecture. Radon transform is applied to locate the needle. The network's model was trained and tested on the total of 619 2D images from 91 cases of breast cancer. The model has achieved an average weighted intersection over union (the weighted Jaccard Index) of 0.986, F1 Score of 0.768, and angle RMSE of 3.73°. The obtained results exceed the other solutions by at least 0.27 and 7° in case of F1 score and angle RMSE, respectively. Finally, the needle is detected in a single frame averagely in 21.6 ms on a modern PC.

基于卷积神经网络的超声图像活检针自动检测与分割。
超声图像中针的可视化是成功进行超声引导核心针活检的必要条件。自动检针可显著缩短手术时间,降低假阴性率,提高诊断率。在本文中,我们提出了一种基于cnn的二维超声图像中核心针的全自动检测方法。提出了自适应矩估计优化器作为CNN结构。采用Radon变换对针进行定位。该网络的模型在91例乳腺癌病例的619张2D图像上进行了训练和测试。该模型的加权交联平均(加权Jaccard指数)为0.986,F1得分为0.768,角度RMSE为3.73°。所得结果在F1分数和角度RMSE情况下分别比其他解至少高出0.27°和7°。最后,在现代PC上,平均在21.6 ms内检测到单个帧中的针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信