D Inupakutika, G Natarajan, S Kaghyan, D Akopian, M Evans, Y Zenong, D Parra-Medina
{"title":"An Integration of Health Tracking Sensor Applications and eLearning Environments for Cloud-Based Health Promotion Campaigns.","authors":"D Inupakutika, G Natarajan, S Kaghyan, D Akopian, M Evans, Y Zenong, D Parra-Medina","doi":"10.2352/issn.2470-1173.2018.06.mobmu-114","DOIUrl":null,"url":null,"abstract":"<p><p>Rapidly evolving technologies like data analysis, smartphone and web-based applications, and the Internet of things have been increasingly used for healthy living, fitness and well-being. These technologies are being utilized by various research studies to reduce obesity. This paper demonstrates design and development of a dataflow protocol that integrates several applications. After registration of a user, activity, nutrition and other lifestyle data from participants are retrieved in a centralized cloud dedicated for health promotion. In addition, users are provided accounts in an e-Learning environment from which learning outcomes can be retrieved. Using the proposed system, health promotion campaigners have the ability to provide feedback to the participants using a dedicated messaging system. Participants authorize the system to use their activity data for the program participation. The implemented system and servicing protocol minimize personnel overhead of large-scale health promotion campaigns and are scalable to assist automated interventions, from automated data retrieval to automated messaging feedback. This paper describes end-to -end workflow of the proposed system. The case study tests are carried with Fitbit Flex2 activity trackers, Withings Scale, Verizon Android-based tablets, Moodle learning management system, and Articulate RISE for learning content development.</p>","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"2018 ","pages":"1141-1148"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2352/issn.2470-1173.2018.06.mobmu-114","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/issn.2470-1173.2018.06.mobmu-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Rapidly evolving technologies like data analysis, smartphone and web-based applications, and the Internet of things have been increasingly used for healthy living, fitness and well-being. These technologies are being utilized by various research studies to reduce obesity. This paper demonstrates design and development of a dataflow protocol that integrates several applications. After registration of a user, activity, nutrition and other lifestyle data from participants are retrieved in a centralized cloud dedicated for health promotion. In addition, users are provided accounts in an e-Learning environment from which learning outcomes can be retrieved. Using the proposed system, health promotion campaigners have the ability to provide feedback to the participants using a dedicated messaging system. Participants authorize the system to use their activity data for the program participation. The implemented system and servicing protocol minimize personnel overhead of large-scale health promotion campaigns and are scalable to assist automated interventions, from automated data retrieval to automated messaging feedback. This paper describes end-to -end workflow of the proposed system. The case study tests are carried with Fitbit Flex2 activity trackers, Withings Scale, Verizon Android-based tablets, Moodle learning management system, and Articulate RISE for learning content development.