{"title":"Estimating Concentration Response Function and Change-Point using Time-Course and Calibration Data.","authors":"B Qiang, A Abdalla, S Morgan, P Hashemi, E Peña","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper the problem of determining the functional relationship between time and the concentration of a chemical substance is studied. An intervention drug is administered on the experimental unit from which the chemical substance (specimen) is measured. This drug is hypothesized to cause a change in the concentration level of the chemical substance a certain lag-time after the intervention. However, the concentration value could not be directly measured, but rather a surrogate response can be measured. In the time-course study, this surrogate response is measured using different electrodes which possess varied behaviors. To utilize these surrogate measurements arising from the different electrodes (sensors), a calibration study is undertaken which measures the surrogate response for the different electrodes at known concentration levels. Based on the time-course and calibration data sets, a statistical procedure to estimate the signal function and the lag-time is proposed. Simulation studies indicate that the proposed procedure is able to reasonably recover the signal function and the lag-time. The procedure is then applied to the real data sets obtained during an analytical chemistry experiment.</p>","PeriodicalId":72412,"journal":{"name":"Biostatistics and biometrics open access journal","volume":"9 3","pages":"57-68"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and biometrics open access journal","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper the problem of determining the functional relationship between time and the concentration of a chemical substance is studied. An intervention drug is administered on the experimental unit from which the chemical substance (specimen) is measured. This drug is hypothesized to cause a change in the concentration level of the chemical substance a certain lag-time after the intervention. However, the concentration value could not be directly measured, but rather a surrogate response can be measured. In the time-course study, this surrogate response is measured using different electrodes which possess varied behaviors. To utilize these surrogate measurements arising from the different electrodes (sensors), a calibration study is undertaken which measures the surrogate response for the different electrodes at known concentration levels. Based on the time-course and calibration data sets, a statistical procedure to estimate the signal function and the lag-time is proposed. Simulation studies indicate that the proposed procedure is able to reasonably recover the signal function and the lag-time. The procedure is then applied to the real data sets obtained during an analytical chemistry experiment.