Ran Sawa , Ikumi Wake , Yu Yamamoto, Yasuhiko Okimura
{"title":"The involvement of Sestrin2 in the effect of IGF-I and leucine on mTROC1 activity in C2C12 and L6 myocytes","authors":"Ran Sawa , Ikumi Wake , Yu Yamamoto, Yasuhiko Okimura","doi":"10.1016/j.ghir.2021.101406","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p><span>IGF-I and branched-chain amino acids<span><span> have been reported to promote muscle hypertrophy via the stimulation of </span>protein synthesis. Sestrin2, the function of which is regulated by </span></span>leucine, has been reported to attenuate the activity of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) that stimulates protein synthesis. The objective of this study was to examine whether IGF-I modulates Sestrin2 abundance and to clarify the involvement of Sestrin2 in the effect of IGF-I and leucine on mTROC1.</p></div><div><h3>Design</h3><p><span><span>C2C12 and L6 myocytes were stimulated by leucine (1 mM) with or without pretreatment with IGF-I (100 ng/mL). Phosphorylation of </span>p70 S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1), both of which are targets of the </span>mTORC1<span>, was examined by western blotting<span>. Effects of Sestrin2 small interfering RNA (siRNA) on the actions of leucine and IGF-I were examined. Sestrin2 mRNA and protein levels were also determined after Sestrin2 siRNA.</span></span></p></div><div><h3>Results</h3><p>Leucine increased the phosphorylation of S6K and 4E-BP1 in a dose-dependent manner. Pretreatment with IGF-I for 5 h further increased the stimulatory effect of leucine on the phosphorylation of S6K and 4E-BP1 in C2C12 cells. IGF-I increased Sestrin2 protein and messenger RNA levels. Sestrin2 siRNA <del>i</del><span>ncreased or tended to increase basal phosphorylation of 4E-BP1 and decreased the leucine-induced phosphorylation in C2C12 and L6 cells, in particular after IGF-I treatment, suggesting the involvement of Sestrin2 in the action of leucine and IGF-I. The net increase in leucine-induced 4E-BP1 phosphorylation appeared to be attenuated by Sestrin2 siRNA. Likewise, Sestrin2 siRNA attenuated leucine-induced S6K phosphorylation in L6 cells. However, Sestrin2 siRNA did not influence leucine-induced S6K phosphorylation in C2C12 cells.</span></p></div><div><h3>Conclusions</h3><p>IGF-I and leucine cooperatively increased mTORC1 activity in C2C12 cells. IGF-I increased Sestrin2. Sestrin2 siRNA experiments showed that Sestrin2 was involved in the effect of leucine and IGF-I on mTORC1 activity in C2C12 and L6 cells, and suggested that increased Sestrin2 by IGF-I pretreatment might play a role in enhancing the effect of leucine on mTORC1.</p></div>","PeriodicalId":12803,"journal":{"name":"Growth Hormone & Igf Research","volume":"59 ","pages":"Article 101406"},"PeriodicalIF":1.6000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ghir.2021.101406","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Growth Hormone & Igf Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096637421000290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Objective
IGF-I and branched-chain amino acids have been reported to promote muscle hypertrophy via the stimulation of protein synthesis. Sestrin2, the function of which is regulated by leucine, has been reported to attenuate the activity of the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) that stimulates protein synthesis. The objective of this study was to examine whether IGF-I modulates Sestrin2 abundance and to clarify the involvement of Sestrin2 in the effect of IGF-I and leucine on mTROC1.
Design
C2C12 and L6 myocytes were stimulated by leucine (1 mM) with or without pretreatment with IGF-I (100 ng/mL). Phosphorylation of p70 S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1), both of which are targets of the mTORC1, was examined by western blotting. Effects of Sestrin2 small interfering RNA (siRNA) on the actions of leucine and IGF-I were examined. Sestrin2 mRNA and protein levels were also determined after Sestrin2 siRNA.
Results
Leucine increased the phosphorylation of S6K and 4E-BP1 in a dose-dependent manner. Pretreatment with IGF-I for 5 h further increased the stimulatory effect of leucine on the phosphorylation of S6K and 4E-BP1 in C2C12 cells. IGF-I increased Sestrin2 protein and messenger RNA levels. Sestrin2 siRNA increased or tended to increase basal phosphorylation of 4E-BP1 and decreased the leucine-induced phosphorylation in C2C12 and L6 cells, in particular after IGF-I treatment, suggesting the involvement of Sestrin2 in the action of leucine and IGF-I. The net increase in leucine-induced 4E-BP1 phosphorylation appeared to be attenuated by Sestrin2 siRNA. Likewise, Sestrin2 siRNA attenuated leucine-induced S6K phosphorylation in L6 cells. However, Sestrin2 siRNA did not influence leucine-induced S6K phosphorylation in C2C12 cells.
Conclusions
IGF-I and leucine cooperatively increased mTORC1 activity in C2C12 cells. IGF-I increased Sestrin2. Sestrin2 siRNA experiments showed that Sestrin2 was involved in the effect of leucine and IGF-I on mTORC1 activity in C2C12 and L6 cells, and suggested that increased Sestrin2 by IGF-I pretreatment might play a role in enhancing the effect of leucine on mTORC1.
期刊介绍:
Growth Hormone & IGF Research is a forum for research on the regulation of growth and metabolism in humans, animals, tissues and cells. It publishes articles on all aspects of growth-promoting and growth-inhibiting hormones and factors, with particular emphasis on insulin-like growth factors (IGFs) and growth hormone. This reflects the increasing importance of growth hormone and IGFs in clinical medicine and in the treatment of diseases.