{"title":"Longitudinal evaluation for COVID-19 chest CT disease progression based on Tchebichef moments","authors":"Lu Tang, Chuangeng Tian, Yankai Meng, Kai Xu","doi":"10.1002/ima.22583","DOIUrl":null,"url":null,"abstract":"<p>Blur is a key property in the perception of COVID-19 computed tomography (CT) image manifestations. Typically, blur causes edge extension, which brings shape changes in infection regions. Tchebichef moments (TM) have been verified efficiently in shape representation. Intuitively, disease progression of same patient over time during the treatment is represented as different blur degrees of infection regions, since different blur degrees cause the magnitudes change of TM on infection regions image, blur of infection regions can be captured by TM. With the above observation, a longitudinal objective quantitative evaluation method for COVID-19 disease progression based on TM is proposed. COVID-19 disease progression CT image database (COVID-19 DPID) is built to employ radiologist subjective ratings and manual contouring, which can test and compare disease progression on the CT images acquired from the same patient over time. Then the images are preprocessed, including lung automatic segmentation, longitudinal registration, slice fusion, and a fused slice image with region of interest (ROI) is obtained. Next, the gradient of a fused ROI image is calculated to represent the shape. The gradient image of fused ROI is separated into same size blocks, a block energy is calculated as quadratic sum of non-direct current moment values. Finally, the objective assessment score is obtained by TM energy-normalized applying block variances. We have conducted experiment on COVID-19 DPID and the experiment results indicate that our proposed metric supplies a satisfactory correlation with subjective evaluation scores, demonstrating effectiveness in the quantitative evaluation for COVID-19 disease progression.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"31 3","pages":"1120-1127"},"PeriodicalIF":3.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ima.22583","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22583","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
Blur is a key property in the perception of COVID-19 computed tomography (CT) image manifestations. Typically, blur causes edge extension, which brings shape changes in infection regions. Tchebichef moments (TM) have been verified efficiently in shape representation. Intuitively, disease progression of same patient over time during the treatment is represented as different blur degrees of infection regions, since different blur degrees cause the magnitudes change of TM on infection regions image, blur of infection regions can be captured by TM. With the above observation, a longitudinal objective quantitative evaluation method for COVID-19 disease progression based on TM is proposed. COVID-19 disease progression CT image database (COVID-19 DPID) is built to employ radiologist subjective ratings and manual contouring, which can test and compare disease progression on the CT images acquired from the same patient over time. Then the images are preprocessed, including lung automatic segmentation, longitudinal registration, slice fusion, and a fused slice image with region of interest (ROI) is obtained. Next, the gradient of a fused ROI image is calculated to represent the shape. The gradient image of fused ROI is separated into same size blocks, a block energy is calculated as quadratic sum of non-direct current moment values. Finally, the objective assessment score is obtained by TM energy-normalized applying block variances. We have conducted experiment on COVID-19 DPID and the experiment results indicate that our proposed metric supplies a satisfactory correlation with subjective evaluation scores, demonstrating effectiveness in the quantitative evaluation for COVID-19 disease progression.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.