{"title":"The Bourque distances for mutation trees of cancers.","authors":"Katharina Jahn, Niko Beerenwinkel, Louxin Zhang","doi":"10.1186/s13015-021-00188-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mutation trees are rooted trees in which nodes are of arbitrary degree and labeled with a mutation set. These trees, also referred to as clonal trees, are used in computational oncology to represent the mutational history of tumours. Classical tree metrics such as the popular Robinson-Foulds distance are of limited use for the comparison of mutation trees. One reason is that mutation trees inferred with different methods or for different patients often contain different sets of mutation labels.</p><p><strong>Results: </strong>We generalize the Robinson-Foulds distance into a set of distance metrics called Bourque distances for comparing mutation trees. We show the basic version of the Bourque distance for mutation trees can be computed in linear time. We also make a connection between the Robinson-Foulds distance and the nearest neighbor interchange distance.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"16 1","pages":"9"},"PeriodicalIF":1.5000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13015-021-00188-3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-021-00188-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Mutation trees are rooted trees in which nodes are of arbitrary degree and labeled with a mutation set. These trees, also referred to as clonal trees, are used in computational oncology to represent the mutational history of tumours. Classical tree metrics such as the popular Robinson-Foulds distance are of limited use for the comparison of mutation trees. One reason is that mutation trees inferred with different methods or for different patients often contain different sets of mutation labels.
Results: We generalize the Robinson-Foulds distance into a set of distance metrics called Bourque distances for comparing mutation trees. We show the basic version of the Bourque distance for mutation trees can be computed in linear time. We also make a connection between the Robinson-Foulds distance and the nearest neighbor interchange distance.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.