Kejing Yin, Ardavan Afshar, Joyce C Ho, William K Cheung, Chao Zhang, Jimeng Sun
{"title":"LogPar: Logistic PARAFAC2 Factorization for Temporal Binary Data with Missing Values.","authors":"Kejing Yin, Ardavan Afshar, Joyce C Ho, William K Cheung, Chao Zhang, Jimeng Sun","doi":"10.1145/3394486.3403213","DOIUrl":null,"url":null,"abstract":"<p><p>Binary data with one-class missing values are ubiquitous in real-world applications. They can be represented by irregular tensors with varying sizes in one dimension, where value one means presence of a feature while zero means unknown (i.e., either presence or absence of a feature). Learning accurate low-rank approximations from such binary irregular tensors is a challenging task. However, none of the existing models developed for factorizing irregular tensors take the missing values into account, and they assume Gaussian distributions, resulting in a distribution mismatch when applied to binary data. In this paper, we propose Logistic PARAFAC2 (LogPar) by modeling the binary irregular tensor with Bernoulli distribution parameterized by an underlying real-valued tensor. Then we approximate the underlying tensor with a positive-unlabeled learning loss function to account for the missing values. We also incorporate uniqueness and temporal smoothness regularization to enhance the interpretability. Extensive experiments using large-scale real-world datasets show that LogPar outperforms all baselines in both irregular tensor completion and downstream predictive tasks. For the irregular tensor completion, LogPar achieves up to 26% relative improvement compared to the best baseline. Besides, LogPar obtains relative improvement of 13.2% for heart failure prediction and 14% for mortality prediction on average compared to the state-of-the-art PARAFAC2 models.</p>","PeriodicalId":74037,"journal":{"name":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","volume":"2020 ","pages":"1625-1635"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3394486.3403213","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394486.3403213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Binary data with one-class missing values are ubiquitous in real-world applications. They can be represented by irregular tensors with varying sizes in one dimension, where value one means presence of a feature while zero means unknown (i.e., either presence or absence of a feature). Learning accurate low-rank approximations from such binary irregular tensors is a challenging task. However, none of the existing models developed for factorizing irregular tensors take the missing values into account, and they assume Gaussian distributions, resulting in a distribution mismatch when applied to binary data. In this paper, we propose Logistic PARAFAC2 (LogPar) by modeling the binary irregular tensor with Bernoulli distribution parameterized by an underlying real-valued tensor. Then we approximate the underlying tensor with a positive-unlabeled learning loss function to account for the missing values. We also incorporate uniqueness and temporal smoothness regularization to enhance the interpretability. Extensive experiments using large-scale real-world datasets show that LogPar outperforms all baselines in both irregular tensor completion and downstream predictive tasks. For the irregular tensor completion, LogPar achieves up to 26% relative improvement compared to the best baseline. Besides, LogPar obtains relative improvement of 13.2% for heart failure prediction and 14% for mortality prediction on average compared to the state-of-the-art PARAFAC2 models.