Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning.

Mauricio Orbes-Arteaga, Thomas Varsavsky, Carole H Sudre, Zach Eaton-Rosen, Lewis J Haddow, Lauge Sørensen, Mads Nielsen, Akshay Pai, Sébastien Ourselin, Marc Modat, Parashkev Nachev, M Jorge Cardoso
{"title":"Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning.","authors":"Mauricio Orbes-Arteaga, Thomas Varsavsky, Carole H Sudre, Zach Eaton-Rosen, Lewis J Haddow, Lauge Sørensen, Mads Nielsen, Akshay Pai, Sébastien Ourselin, Marc Modat, Parashkev Nachev, M Jorge Cardoso","doi":"10.1007/978-3-030-33391-1_7","DOIUrl":null,"url":null,"abstract":"<p><p>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to <i>n</i> target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</p>","PeriodicalId":92891,"journal":{"name":"Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : first MICCAI Workshop, DART 2019, and first International Workshop, MIL3ID 2019, Shenzhen, held in conjunction with MICCAI 20...","volume":"2019 ","pages":"54-62"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610933/pdf/EMS126674.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : first MICCAI Workshop, DART 2019, and first International Workshop, MIL3ID 2019, Shenzhen, held in conjunction with MICCAI 20...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-33391-1_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to n target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.

Abstract Image

Abstract Image

通过成对一致性和对抗性学习实现脑磁共振成像的多域适应性
在医学图像上训练的监督学习算法往往无法在采集参数发生变化时进行泛化。最近在领域适应方面的研究解决了这一难题,成功地利用了源领域中的标记数据,在无标记的目标领域中表现出色。受近期半监督学习工作的启发,我们推出了一种新方法,可从一个源域适应 n 个目标域(只要有涵盖所有域的配对数据)。我们的多域适应方法利用一致性损失与对抗学习相结合。我们以 MICCAI 2017 挑战赛数据为源域和两个目标域,提供了脑磁共振成像中白质病变高强度分割的结果。所提出的方法明显优于其他域自适应基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信