Alexis Buatois, Samuel Nguyen, Celine Bailleul, Robert Gerlai
{"title":"Colored-Light Preference in Zebrafish (<i>Danio rerio</i>).","authors":"Alexis Buatois, Samuel Nguyen, Celine Bailleul, Robert Gerlai","doi":"10.1089/zeb.2020.1977","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, the zebrafish has been increasingly employed in biomedical neuroscience research due to its numerous evolutionarily conserved features with mammals. Its simple brain and the several molecular tools available for this species make the zebrafish an appealing model to study mechanisms of complex brain functions, including learning and memory. Most learning paradigms developed for the zebrafish have employed visual stimuli as the associative cue. Spontaneous color preference is a potential confound in such studies. It has been analyzed in zebrafish using colored objects, but with conflicting results. It has rarely been explored with colored light, despite the increasing use of computer-generated visual stimuli. Here, we employ a light emitting diode (RGB-system) light-based color preference task in the plus-maze. In two independent experiments, zebrafish were tested in a four-choice or dual-choice condition by using four different-colored lights (red, green, blue and yellow). Our results suggest a light preference hierarchy that depends on context, since yellow was preferred over green in the four-choice condition whereas blue was preferred over all other colors in the two-choice condition. These results are useful for future color-light-based learning experiments in zebrafish.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"18 4","pages":"243-251"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2020.1977","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Over the past decade, the zebrafish has been increasingly employed in biomedical neuroscience research due to its numerous evolutionarily conserved features with mammals. Its simple brain and the several molecular tools available for this species make the zebrafish an appealing model to study mechanisms of complex brain functions, including learning and memory. Most learning paradigms developed for the zebrafish have employed visual stimuli as the associative cue. Spontaneous color preference is a potential confound in such studies. It has been analyzed in zebrafish using colored objects, but with conflicting results. It has rarely been explored with colored light, despite the increasing use of computer-generated visual stimuli. Here, we employ a light emitting diode (RGB-system) light-based color preference task in the plus-maze. In two independent experiments, zebrafish were tested in a four-choice or dual-choice condition by using four different-colored lights (red, green, blue and yellow). Our results suggest a light preference hierarchy that depends on context, since yellow was preferred over green in the four-choice condition whereas blue was preferred over all other colors in the two-choice condition. These results are useful for future color-light-based learning experiments in zebrafish.
期刊介绍:
Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease.
Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage.
Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community.
TechnoFish features two types of articles:
TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines
TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community
Zebrafish coverage includes:
Comparative genomics and evolution
Molecular/cellular mechanisms of cell growth
Genetic analysis of embryogenesis and disease
Toxicological and infectious disease models
Models for neurological disorders and aging
New methods, tools, and experimental approaches
Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.