A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images.

Computing in cardiology Pub Date : 2020-09-01 Epub Date: 2021-02-10 DOI:10.22489/CinC.2020.204
Roshan Reddy Upendra, Brian Jamison Wentz, Suzanne M Shontz, Cristian A Linte
{"title":"A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images.","authors":"Roshan Reddy Upendra, Brian Jamison Wentz, Suzanne M Shontz, Cristian A Linte","doi":"10.22489/CinC.2020.204","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168986/pdf/nihms-1705226.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.

基于卷积神经网络的可变形图像配准方法,用于从线性心脏磁共振图像中估计心脏运动。
在这项工作中,我们介绍了一种无监督深度学习框架,该框架以基于拉普拉斯算子的平滑损失为特色,用于三维电影心脏磁共振(CMR)图像的可变形配准。在配准之前,通过使用 U-Net 模型分割左心室血池、左心室心肌和右心室血池,并沿左心室血池中心对齐二维切片,对输入的三维图像进行切片错位校正。我们使用自动心脏诊断挑战赛(ACDC)数据集进行了实验。我们使用配准变形场将人工分割的左心室血池、左心室心肌和左心室血池标签从舒张末期(ED)帧翘曲到心动周期的其他帧。我们对左心室血池、左心室心肌和左心室血池的 Dice 评分平均值分别为 94.84%、85.22% 和 84.36%,Hausdorff 距离 (HD) 分别为 2.74 毫米、5.88 毫米和 9.04 毫米。我们还介绍了使用基于 CNN 的心脏运动估算方法估算患者牵引图像的流水线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信