{"title":"Evolutionary divergence of motifs in B-class MADS-box proteins of seed plants.","authors":"Gangxu Shen, Yong Jia, Wei-Lung Wang","doi":"10.1186/s40709-021-00144-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MADS-box transcription factors function as homo- or heterodimers and regulate many aspects of plant development; moreover, MADS-box genes have undergone extensive duplication and divergence. For example, the morphological diversity of floral organs is closely related to the functional divergence of the MADS-box gene family. B-class genes (such as Arabidopsis thaliana APETALA3 [AP3] and PISTILLATA [PI]) belong to a subgroup of MADS-box genes. Here, we collected 97 MADS-box B protein sequences from 21 seed plant species and examined their motifs to better understand the functional evolution of B proteins.</p><p><strong>Results: </strong>We used the MEME tool to identify conserved sequence motifs in these B proteins; unique motif arrangements and sequences were identified in these B proteins. The keratin-like domains of Malus domestica and Populus trichocarpa B proteins differed from those in other angiosperms, suggesting that a novel regulatory network might have evolved in these species. The MADS domains of Nelumbo nucifera, Glycine max, and Amborella trichopoda B-proteins contained motif 9; in contrast, those of other plants contained motif 1. Protein modelling analyses revealed that MADS domains with motif 9 may lack amino acid sites required for DNA-binding. These results suggested that the three species might share an alternative mechanism controlling floral development.</p><p><strong>Conclusions: </strong>Amborella trichopoda has B proteins with either motif 1 or motif 9 MADS domains, suggesting that these two types of MADS domains evolved from the ancestral domain into two groups, those with motif 9 (N. nucifera and G. max), and those with motif 1. Moreover, our results suggest that the homodimer/heterodimer intermediate transition structure first appeared in A. trichopoda. Therefore, our systematic analysis of the motifs in B proteins sheds light on the evolution of these important transcription factors.</p>","PeriodicalId":50251,"journal":{"name":"Journal of Biological Research-Thessaloniki","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-021-00144-7","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Thessaloniki","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-021-00144-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: MADS-box transcription factors function as homo- or heterodimers and regulate many aspects of plant development; moreover, MADS-box genes have undergone extensive duplication and divergence. For example, the morphological diversity of floral organs is closely related to the functional divergence of the MADS-box gene family. B-class genes (such as Arabidopsis thaliana APETALA3 [AP3] and PISTILLATA [PI]) belong to a subgroup of MADS-box genes. Here, we collected 97 MADS-box B protein sequences from 21 seed plant species and examined their motifs to better understand the functional evolution of B proteins.
Results: We used the MEME tool to identify conserved sequence motifs in these B proteins; unique motif arrangements and sequences were identified in these B proteins. The keratin-like domains of Malus domestica and Populus trichocarpa B proteins differed from those in other angiosperms, suggesting that a novel regulatory network might have evolved in these species. The MADS domains of Nelumbo nucifera, Glycine max, and Amborella trichopoda B-proteins contained motif 9; in contrast, those of other plants contained motif 1. Protein modelling analyses revealed that MADS domains with motif 9 may lack amino acid sites required for DNA-binding. These results suggested that the three species might share an alternative mechanism controlling floral development.
Conclusions: Amborella trichopoda has B proteins with either motif 1 or motif 9 MADS domains, suggesting that these two types of MADS domains evolved from the ancestral domain into two groups, those with motif 9 (N. nucifera and G. max), and those with motif 1. Moreover, our results suggest that the homodimer/heterodimer intermediate transition structure first appeared in A. trichopoda. Therefore, our systematic analysis of the motifs in B proteins sheds light on the evolution of these important transcription factors.
期刊介绍:
Journal of Biological Research-Thessaloniki is a peer-reviewed, open access, international journal that publishes articles providing novel insights into the major fields of biology.
Topics covered in Journal of Biological Research-Thessaloniki include, but are not limited to: molecular biology, cytology, genetics, evolutionary biology, morphology, development and differentiation, taxonomy, bioinformatics, physiology, marine biology, behaviour, ecology and conservation.