{"title":"Ultrafast strain propagation and acoustic resonances in nanoscale bilayer systems.","authors":"N Bach, S Schäfer","doi":"10.1063/4.0000079","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast structural probing has greatly enhanced our understanding of the coupling of atomic motion to electronic and phononic degrees-of-freedom in quasi-bulk materials. In bi- and multilayer model systems, additionally, spatially inhomogeneous relaxation channels are accessible, often governed by pronounced interfacial couplings and local excitations in confined geometries. Here, we systematically explore the key dependencies of the low-frequency acoustic phonon spectrum in an elastically mismatched metal/semiconductor bilayer system optically excited by femtosecond laser pulses. We track the spatiotemporal strain wave propagation in the heterostructure employing a discrete numerical linear chain simulation and access acoustic wave reflections and interfacial couplings with a phonon mode description based on a continuum mechanics model. Due to the interplay of elastic properties and mass densities of the two materials, acoustic resonance frequencies of the heterostructure significantly differ from breathing modes in monolayer films. For large acoustic mismatch, the spatial localization of phonon eigenmodes is derived from analytical approximations and can be interpreted as harmonic oscillations in decoupled mechanical resonators.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000079","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrafast structural probing has greatly enhanced our understanding of the coupling of atomic motion to electronic and phononic degrees-of-freedom in quasi-bulk materials. In bi- and multilayer model systems, additionally, spatially inhomogeneous relaxation channels are accessible, often governed by pronounced interfacial couplings and local excitations in confined geometries. Here, we systematically explore the key dependencies of the low-frequency acoustic phonon spectrum in an elastically mismatched metal/semiconductor bilayer system optically excited by femtosecond laser pulses. We track the spatiotemporal strain wave propagation in the heterostructure employing a discrete numerical linear chain simulation and access acoustic wave reflections and interfacial couplings with a phonon mode description based on a continuum mechanics model. Due to the interplay of elastic properties and mass densities of the two materials, acoustic resonance frequencies of the heterostructure significantly differ from breathing modes in monolayer films. For large acoustic mismatch, the spatial localization of phonon eigenmodes is derived from analytical approximations and can be interpreted as harmonic oscillations in decoupled mechanical resonators.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.