{"title":"Statistical parametric mapping of biomechanical one-dimensional data with Bayesian inference.","authors":"Ben Serrien, Maggy Goossens, Jean-Pierre Baeyens","doi":"10.1080/23335432.2019.1597643","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in Statistical Parametric Mapping (SPM) for continuum data (e.g. kinematic time series) have been adopted by the biomechanics research community with great interest. The Python/MATLAB package spm1d developed by T. Pataky has introduced SPM into the biomechanical literature, adapted originally from neuroimaging. The package already allows many of the statistical analyses common in biomechanics from a frequentist perspective. In this paper, we propose an application of Bayesian analogs of SPM based on Bayes factors and posterior probability with default priors using the BayesFactor package in R. Results are provided for two typical designs (two-sample and paired sample <i>t</i>-tests) and compared to classical SPM results, but more complex standard designs are possible in both classical and Bayesian frameworks. The advantages of Bayesian analyses in general and specifically for SPM are discussed. Scripts of the analyses are available as supplementary materials.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"6 1","pages":"9-18"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2019.1597643","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2019.1597643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 28
Abstract
Recent developments in Statistical Parametric Mapping (SPM) for continuum data (e.g. kinematic time series) have been adopted by the biomechanics research community with great interest. The Python/MATLAB package spm1d developed by T. Pataky has introduced SPM into the biomechanical literature, adapted originally from neuroimaging. The package already allows many of the statistical analyses common in biomechanics from a frequentist perspective. In this paper, we propose an application of Bayesian analogs of SPM based on Bayes factors and posterior probability with default priors using the BayesFactor package in R. Results are provided for two typical designs (two-sample and paired sample t-tests) and compared to classical SPM results, but more complex standard designs are possible in both classical and Bayesian frameworks. The advantages of Bayesian analyses in general and specifically for SPM are discussed. Scripts of the analyses are available as supplementary materials.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.