Data mining the effects of testing conditions and specimen properties on brain biomechanics.

Q2 Medicine
Folly Patterson, Osama AbuOmar, Mike Jones, Keith Tansey, R K Prabhu
{"title":"Data mining the effects of testing conditions and specimen properties on brain biomechanics.","authors":"Folly Patterson,&nbsp;Osama AbuOmar,&nbsp;Mike Jones,&nbsp;Keith Tansey,&nbsp;R K Prabhu","doi":"10.1080/23335432.2019.1621206","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury is highly prevalent in the United States. However, despite its frequency and significance, there is little understanding of how the brain responds during injurious loading. A confounding problem is that because testing conditions vary between assessment methods, brain biomechanics cannot be fully understood. Data mining techniques, which are commonly used to determine patterns in large datasets, were applied to discover how changes in testing conditions affect the mechanical response of the brain. Data at various strain rates were collected from published literature and sorted into datasets based on strain rate and tension vs. compression. Self-organizing maps were used to conduct a sensitivity analysis to rank the testing condition parameters by importance. Fuzzy C-means clustering was applied to determine if there were any patterns in the data. The parameter rankings and clustering for each dataset varied, indicating that the strain rate and type of deformation influence the role of these parameters in the datasets.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"6 1","pages":"34-46"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2019.1621206","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2019.1621206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Traumatic brain injury is highly prevalent in the United States. However, despite its frequency and significance, there is little understanding of how the brain responds during injurious loading. A confounding problem is that because testing conditions vary between assessment methods, brain biomechanics cannot be fully understood. Data mining techniques, which are commonly used to determine patterns in large datasets, were applied to discover how changes in testing conditions affect the mechanical response of the brain. Data at various strain rates were collected from published literature and sorted into datasets based on strain rate and tension vs. compression. Self-organizing maps were used to conduct a sensitivity analysis to rank the testing condition parameters by importance. Fuzzy C-means clustering was applied to determine if there were any patterns in the data. The parameter rankings and clustering for each dataset varied, indicating that the strain rate and type of deformation influence the role of these parameters in the datasets.

数据挖掘测试条件和样品性质对脑生物力学的影响。
创伤性脑损伤在美国非常普遍。然而,尽管它的频率和重要性,人们对大脑在损伤负荷时的反应知之甚少。一个令人困惑的问题是,由于不同评估方法的测试条件不同,大脑生物力学不能完全理解。数据挖掘技术通常用于确定大型数据集中的模式,它被用于发现测试条件的变化如何影响大脑的机械反应。从已发表的文献中收集不同应变率下的数据,并根据应变率和张力与压缩进行数据集分类。采用自组织图进行敏感性分析,按重要性对测试条件参数进行排序。采用模糊c均值聚类来确定数据中是否存在模式。每个数据集的参数排名和聚类不同,表明应变速率和变形类型影响这些参数在数据集中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Biomechanics
International Biomechanics Medicine-Rehabilitation
CiteScore
1.90
自引率
0.00%
发文量
2
审稿时长
17 weeks
期刊介绍: International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信