A computational study of mechanical properties of collagen-based bio-composites.

Q2 Medicine
Marco Fielder, Arun K Nair
{"title":"A computational study of mechanical properties of collagen-based bio-composites.","authors":"Marco Fielder,&nbsp;Arun K Nair","doi":"10.1080/23335432.2020.1812428","DOIUrl":null,"url":null,"abstract":"<p><p>Studying changes in collagen deformation behavior at the nanoscale due to variations in mineralization and hydration is important for characterizing and developing collagen-based bio-composites. Recent studies also find that carbon nanotubes (CNTs) show promise as a reinforcing material for collagenous bio-composites. Currently, the effects of variation in mineral, water, and CNT content on collagen gap and overlap region mechanics during compression is unexplored. We use molecular dynamics simulations to investigate how variations in mineral, water, and CNT contents of collagen bio-composites in compression change their deformation behavior and thermal properties. Results indicate that variations in mineral and water content affect the collagen structure due to expansion or contraction of the gap and overlap regions. The deformation mechanisms of the gap and overlap regions also change. The presence of CNTs in non-mineralized collagen reduces the deformation of the gap region and increases the bio-composite elastic modulus to ranges comparable to mineralized collagen. The collagen/CNT bio-composites are also determined to have a higher specific heat than the studied mineralized collagen bio-composites, making them more likely to be resistant to thermal damage that could occur during implantation or functional use of a collagen collagen/CNT bio-composite biomaterial.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":" ","pages":"76-87"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2020.1812428","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2020.1812428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Studying changes in collagen deformation behavior at the nanoscale due to variations in mineralization and hydration is important for characterizing and developing collagen-based bio-composites. Recent studies also find that carbon nanotubes (CNTs) show promise as a reinforcing material for collagenous bio-composites. Currently, the effects of variation in mineral, water, and CNT content on collagen gap and overlap region mechanics during compression is unexplored. We use molecular dynamics simulations to investigate how variations in mineral, water, and CNT contents of collagen bio-composites in compression change their deformation behavior and thermal properties. Results indicate that variations in mineral and water content affect the collagen structure due to expansion or contraction of the gap and overlap regions. The deformation mechanisms of the gap and overlap regions also change. The presence of CNTs in non-mineralized collagen reduces the deformation of the gap region and increases the bio-composite elastic modulus to ranges comparable to mineralized collagen. The collagen/CNT bio-composites are also determined to have a higher specific heat than the studied mineralized collagen bio-composites, making them more likely to be resistant to thermal damage that could occur during implantation or functional use of a collagen collagen/CNT bio-composite biomaterial.

Abstract Image

Abstract Image

Abstract Image

胶原基生物复合材料力学性能的计算研究。
研究矿化和水合作用导致的纳米尺度下胶原变形行为的变化对于表征和开发胶原基生物复合材料具有重要意义。最近的研究还发现,碳纳米管(CNTs)作为胶原生物复合材料的增强材料具有很大的前景。目前,矿物、水和碳纳米管含量的变化对压缩过程中胶原间隙和重叠区域力学的影响尚未得到探索。我们使用分子动力学模拟来研究胶原生物复合材料在压缩过程中矿物质、水和碳纳米管含量的变化如何改变其变形行为和热性能。结果表明,矿物质和水分含量的变化会影响胶原蛋白的结构,这是由于间隙和重叠区域的扩张或收缩。间隙区和重叠区的变形机制也发生了变化。CNTs在非矿化胶原中的存在减少了间隙区域的变形,并将生物复合材料的弹性模量提高到与矿化胶原相当的范围。胶原蛋白/碳纳米管生物复合材料也被确定具有比研究的矿化胶原蛋白生物复合材料更高的比热,使它们更有可能抵抗在植入或胶原蛋白/碳纳米管生物复合材料的功能使用过程中可能发生的热损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Biomechanics
International Biomechanics Medicine-Rehabilitation
CiteScore
1.90
自引率
0.00%
发文量
2
审稿时长
17 weeks
期刊介绍: International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信