Lei Huang, Liwen Su, Yuling Zheng, Yuanyuan Chen, Fangrong Yan
{"title":"Power prior for borrowing the real-world data in bioequivalence test with a parallel design.","authors":"Lei Huang, Liwen Su, Yuling Zheng, Yuanyuan Chen, Fangrong Yan","doi":"10.1515/ijb-2020-0119","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, real-world study has attracted wide attention for drug development. In bioequivalence study, the reference drug often has been marketed for many years and accumulated abundant real-world data. It is therefore appealing to incorporate these data in the design to improve trial efficiency. In this paper, we propose a Bayesian method to include real-world data of the reference drug in a current bioequivalence trial, with the aim to increase the power of analysis and reduce sample size for long half-life drugs. We adopt the power prior method for incorporating real-world data and use the average bioequivalence posterior probability to evaluate the bioequivalence between the test drug and the reference drug. Simulations were conducted to investigate the performance of the proposed method in different scenarios. The simulation results show that the proposed design has higher power than the traditional design without borrowing real-world data, while controlling the type I error. Moreover, the proposed method saves sample size and reduces costs for the trial.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, real-world study has attracted wide attention for drug development. In bioequivalence study, the reference drug often has been marketed for many years and accumulated abundant real-world data. It is therefore appealing to incorporate these data in the design to improve trial efficiency. In this paper, we propose a Bayesian method to include real-world data of the reference drug in a current bioequivalence trial, with the aim to increase the power of analysis and reduce sample size for long half-life drugs. We adopt the power prior method for incorporating real-world data and use the average bioequivalence posterior probability to evaluate the bioequivalence between the test drug and the reference drug. Simulations were conducted to investigate the performance of the proposed method in different scenarios. The simulation results show that the proposed design has higher power than the traditional design without borrowing real-world data, while controlling the type I error. Moreover, the proposed method saves sample size and reduces costs for the trial.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.