{"title":"Stability of an HTLV-HIV coinfection model with multiple delays and CTL-mediated immunity.","authors":"N H AlShamrani","doi":"10.1186/s13662-021-03416-7","DOIUrl":null,"url":null,"abstract":"<p><p>In the literature, several mathematical models have been formulated and developed to describe the within-host dynamics of either human immunodeficiency virus (HIV) or human T-lymphotropic virus type I (HTLV-I) monoinfections. In this paper, we formulate and analyze a novel within-host dynamics model of HTLV-HIV coinfection taking into consideration the response of cytotoxic T lymphocytes (CTLs). The uninfected <math><mi>CD</mi> <msup><mn>4</mn> <mo>+</mo></msup> <mi>T</mi></math> cells can be infected via HIV by two mechanisms, free-to-cell and infected-to-cell. On the other hand, the HTLV-I has two modes for transmission, (i) horizontal, via direct infected-to-cell touch, and (ii) vertical, by mitotic division of active HTLV-infected cells. It is well known that the intracellular time delays play an important role in within-host virus dynamics. In this work, we consider six types of distributed-time delays. We investigate the fundamental properties of solutions. Then, we calculate the steady states of the model in terms of threshold parameters. Moreover, we study the global stability of the steady states by using the Lyapunov method. We conduct numerical simulations to illustrate and support our theoretical results. In addition, we discuss the effect of multiple time delays on stability of the steady states of the system.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2021 1","pages":"270"},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-021-03416-7","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-021-03416-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
In the literature, several mathematical models have been formulated and developed to describe the within-host dynamics of either human immunodeficiency virus (HIV) or human T-lymphotropic virus type I (HTLV-I) monoinfections. In this paper, we formulate and analyze a novel within-host dynamics model of HTLV-HIV coinfection taking into consideration the response of cytotoxic T lymphocytes (CTLs). The uninfected cells can be infected via HIV by two mechanisms, free-to-cell and infected-to-cell. On the other hand, the HTLV-I has two modes for transmission, (i) horizontal, via direct infected-to-cell touch, and (ii) vertical, by mitotic division of active HTLV-infected cells. It is well known that the intracellular time delays play an important role in within-host virus dynamics. In this work, we consider six types of distributed-time delays. We investigate the fundamental properties of solutions. Then, we calculate the steady states of the model in terms of threshold parameters. Moreover, we study the global stability of the steady states by using the Lyapunov method. We conduct numerical simulations to illustrate and support our theoretical results. In addition, we discuss the effect of multiple time delays on stability of the steady states of the system.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.