Russell C Wyeth, Theora Holden, Hamed Jalala, James A Murray
{"title":"Rare-Earth Magnets Influence Movement Patterns of the Magnetically Sensitive Nudibranch <i>Tritonia exsulans</i> in Its Natural Habitat.","authors":"Russell C Wyeth, Theora Holden, Hamed Jalala, James A Murray","doi":"10.1086/713663","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe nudibranch <i>Tritonia exsulans</i> (previously <i>Tritonia diomedea</i>) is known to have behaviors and neurons that can be modified by perturbations of the Earth's magnetic field. There is no definitive evidence for how this magnetic sense is used in nature. Using an exploratory approach, we tested for possible effects of magnetic perturbations based on underwater video of crawling patterns in the slugs' natural habitat, with magnets of varying strength deployed on the substrate. For analysis, we used a paired comparison of tracks of animals between segments 25-50 cm distant from the magnets and segments of the same tracks 0-25 cm from the magnets, to determine whether any differences depended on the strength of the magnet. Most track measurements (length, displacement, velocity, and tortuosity) showed no such differences. However, effects were observed for the changes in track headings between successive points. These results showed that tracks had relatively higher heading variability when they moved closer to stronger magnets. We suggest that this supports a hypothesis that <i>T. exsulans</i> continuously uses a magnetic sense to help maintain straight-line navigation. Further specific testing of the hypothesis is now needed to verify this new possibility for how animals can benefit from a compass sense.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"240 2","pages":"105-117"},"PeriodicalIF":2.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/713663","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/713663","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
AbstractThe nudibranch Tritonia exsulans (previously Tritonia diomedea) is known to have behaviors and neurons that can be modified by perturbations of the Earth's magnetic field. There is no definitive evidence for how this magnetic sense is used in nature. Using an exploratory approach, we tested for possible effects of magnetic perturbations based on underwater video of crawling patterns in the slugs' natural habitat, with magnets of varying strength deployed on the substrate. For analysis, we used a paired comparison of tracks of animals between segments 25-50 cm distant from the magnets and segments of the same tracks 0-25 cm from the magnets, to determine whether any differences depended on the strength of the magnet. Most track measurements (length, displacement, velocity, and tortuosity) showed no such differences. However, effects were observed for the changes in track headings between successive points. These results showed that tracks had relatively higher heading variability when they moved closer to stronger magnets. We suggest that this supports a hypothesis that T. exsulans continuously uses a magnetic sense to help maintain straight-line navigation. Further specific testing of the hypothesis is now needed to verify this new possibility for how animals can benefit from a compass sense.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.