Global stability of a delayed and diffusive virus model with nonlinear infection function.

IF 1.8 4区 数学 Q3 ECOLOGY
Yan Geng, Jinhu Xu
{"title":"Global stability of a delayed and diffusive virus model with nonlinear infection function.","authors":"Yan Geng,&nbsp;Jinhu Xu","doi":"10.1080/17513758.2021.1922770","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies a delayed viral infection model with diffusion and a general incidence rate. A discrete-time model was derived by applying nonstandard finite difference scheme. The positivity and boundedness of solutions are presented. We established the global stability of equilibria in terms of <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> by applying Lyapunov method. The results showed that if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> is less than 1, then the infection-free equilibrium <math><msub><mi>E</mi><mn>0</mn></msub></math> is globally asymptotically stable. If <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> is greater than 1, then the infection equilibrium <math><msub><mi>E</mi><mo>∗</mo></msub></math> is globally asymptotically stable. Numerical experiments are carried out to illustrate the theoretical results.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"15 1","pages":"287-307"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2021.1922770","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2021.1922770","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies a delayed viral infection model with diffusion and a general incidence rate. A discrete-time model was derived by applying nonstandard finite difference scheme. The positivity and boundedness of solutions are presented. We established the global stability of equilibria in terms of R0 by applying Lyapunov method. The results showed that if R0 is less than 1, then the infection-free equilibrium E0 is globally asymptotically stable. If R0 is greater than 1, then the infection equilibrium E is globally asymptotically stable. Numerical experiments are carried out to illustrate the theoretical results.

一类具有非线性感染函数的延迟扩散病毒模型的全局稳定性。
本文研究了具有扩散和一般发病率的延迟病毒感染模型。采用非标准有限差分格式建立了离散时间模型。给出了解的正性和有界性。利用Lyapunov方法建立了R0下均衡的全局稳定性。结果表明,当R0小于1时,无感染平衡点E0是全局渐近稳定的。若R0大于1,则感染平衡点E *是全局渐近稳定的。数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信