{"title":"The Lysosomal Storage Disorder Due to <i>fig4a</i> Mutation Causes Robust Liver Vacuolation in Zebrafish.","authors":"Wandong Bao, Xinjuan Wang, Lingfei Luo, Rui Ni","doi":"10.1089/zeb.2020.1911","DOIUrl":null,"url":null,"abstract":"<p><p>The phospholipid phosphatase FIG4/Fig4 is a subunit of PIKFYVE/Pikfyve kinase complex that synthesizes phosphatidylinositol 3,5-bisphosphate (PI(3,5)P<sub>2</sub>), a key regulator of endolysosomal trafficking and function. Loss of FIG4/Fig4 leads to intracellular deficiency of PI(3,5)P<sub>2</sub> signaling and multiple endolysosomal defects. Previous works were focused on the effects of FIG4/Fig4 mutations in the nervous and musculoskeletal systems in human clinical and animal studies. In this study, we describe a zebrafish recessive mutant <i>cq35</i> showing robust liver vacuolation and lethality, with a predicted truncating mutation in <i>fig4a</i> gene. The liver vacuolation progress in <i>fig4a</i> mutant was reversible after regaining normal <i>fig4a</i> transcripts. The hepatic vacuolation pathology was identified as abnormal lysosomal storage with numerous accumulated cargoes, including autophagy intermediates, and caused progressive degeneration of bile canaliculi in mutant liver. These hepatic pathological details of <i>fig4a</i> mutant were repeated in zebrafish <i>pikfyve</i> mutant. Thus, zebrafish possess the conserved structural and functional mechanisms in Pikfyve kinase complex, based on which, <i>pikfyve</i> mutant phenotype covered <i>fig4a</i> mutant phenotype in their double mutant. Our findings represent the first description of the <i>in vivo</i> defects caused by FIG4/Fig4 mutation or PI(3,5)P<sub>2</sub> deficiency in liver, and reveal the conserved complex mechanisms associated with FIG4/Fig4-deficient disorders in zebrafish.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"18 3","pages":"175-183"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2020.1911","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The phospholipid phosphatase FIG4/Fig4 is a subunit of PIKFYVE/Pikfyve kinase complex that synthesizes phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a key regulator of endolysosomal trafficking and function. Loss of FIG4/Fig4 leads to intracellular deficiency of PI(3,5)P2 signaling and multiple endolysosomal defects. Previous works were focused on the effects of FIG4/Fig4 mutations in the nervous and musculoskeletal systems in human clinical and animal studies. In this study, we describe a zebrafish recessive mutant cq35 showing robust liver vacuolation and lethality, with a predicted truncating mutation in fig4a gene. The liver vacuolation progress in fig4a mutant was reversible after regaining normal fig4a transcripts. The hepatic vacuolation pathology was identified as abnormal lysosomal storage with numerous accumulated cargoes, including autophagy intermediates, and caused progressive degeneration of bile canaliculi in mutant liver. These hepatic pathological details of fig4a mutant were repeated in zebrafish pikfyve mutant. Thus, zebrafish possess the conserved structural and functional mechanisms in Pikfyve kinase complex, based on which, pikfyve mutant phenotype covered fig4a mutant phenotype in their double mutant. Our findings represent the first description of the in vivo defects caused by FIG4/Fig4 mutation or PI(3,5)P2 deficiency in liver, and reveal the conserved complex mechanisms associated with FIG4/Fig4-deficient disorders in zebrafish.
期刊介绍:
Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease.
Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage.
Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community.
TechnoFish features two types of articles:
TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines
TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community
Zebrafish coverage includes:
Comparative genomics and evolution
Molecular/cellular mechanisms of cell growth
Genetic analysis of embryogenesis and disease
Toxicological and infectious disease models
Models for neurological disorders and aging
New methods, tools, and experimental approaches
Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.