A property-response perspective on modern toxicity assessment and drug toxicity index (DTI).

In Silico Pharmacology Pub Date : 2021-05-15 eCollection Date: 2021-01-01 DOI:10.1007/s40203-021-00096-9
Vaibhav A Dixit, Pragati Singh
{"title":"A property-response perspective on modern toxicity assessment and drug toxicity index (DTI).","authors":"Vaibhav A Dixit, Pragati Singh","doi":"10.1007/s40203-021-00096-9","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicity related failures in drug discovery and clinical development have motivated scientists and regulators to develop a wide range of in-vitro, in-silico tools coupled with data science methods. Older drug discovery rules are being constantly modified to churn out any hidden predictive value. Nonetheless, the dose-response concepts remain central to all these methods. Over the last 2 decades medicinal chemists, and pharmacologists have observed that different physicochemical, and pharmacological properties capture trends in toxic responses. We propose that these observations should be viewed in a comprehensive property-response framework where dose is only a factor that modifies the inherent toxicity potential. We then introduce the recently proposed \"Drug Toxicity Index (DTI)\" and briefly summarize its applications. A webserver is available to calculate DTI values (https://all-tool-kit.github.io/Web-Tool.html).</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":" ","pages":"37"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124026/pdf/40203_2021_Article_96.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-021-00096-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Toxicity related failures in drug discovery and clinical development have motivated scientists and regulators to develop a wide range of in-vitro, in-silico tools coupled with data science methods. Older drug discovery rules are being constantly modified to churn out any hidden predictive value. Nonetheless, the dose-response concepts remain central to all these methods. Over the last 2 decades medicinal chemists, and pharmacologists have observed that different physicochemical, and pharmacological properties capture trends in toxic responses. We propose that these observations should be viewed in a comprehensive property-response framework where dose is only a factor that modifies the inherent toxicity potential. We then introduce the recently proposed "Drug Toxicity Index (DTI)" and briefly summarize its applications. A webserver is available to calculate DTI values (https://all-tool-kit.github.io/Web-Tool.html).

从性质-反应角度看现代毒性评估和药物毒性指数 (DTI)。
药物发现和临床开发过程中与毒性相关的失败促使科学家和监管机构开发出了大量体外、硅内工具以及数据科学方法。旧的药物发现规则不断被修改,以找出任何隐藏的预测价值。然而,剂量反应概念仍然是所有这些方法的核心。在过去 20 年中,药物化学家和药理学家观察到,不同的物理化学和药理学特性捕捉到了毒性反应的趋势。我们建议应在一个全面的属性-反应框架内看待这些观察结果,其中剂量只是改变固有毒性潜力的一个因素。然后,我们介绍了最近提出的 "药物毒性指数(DTI)",并简要总结了其应用。我们提供了一个用于计算 DTI 值的网络服务器 (https://all-tool-kit.github.io/Web-Tool.html)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信