Finite-element simulation of photoinduced strain dynamics in silicon thin plates.

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2021-04-15 eCollection Date: 2021-03-01 DOI:10.1063/4.0000059
A Nakamura, T Shimojima, K Ishizaka
{"title":"Finite-element simulation of photoinduced strain dynamics in silicon thin plates.","authors":"A Nakamura, T Shimojima, K Ishizaka","doi":"10.1063/4.0000059","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the femtosecond-optical-pulse-induced strain dynamics in relatively thin (100 nm) and thick (10 000 nm) silicon plates based on finite-element simulations. In the thin sample, almost spatially homogeneous excitation by the optical pulse predominantly generates a standing wave of the lowest-order acoustic resonance mode along the out-of-plane direction. At the same time, laterally propagating plate waves are emitted at the sample edge through the open edge deformation. Fourier transformation analysis reveals that the plate waves in the thin sample are mainly composed of two symmetric Lamb waves, reflecting the spatially uniform photoexcitation. In the thick sample, on the other hand, only the near surface region is photo-excited and thus a strain pulse that propagates along the out-of-plane direction is generated, accompanying the laterally propagating pulse-like strain dynamics through the edge deformation. These lateral strain pulses consist of multiple Lamb waves, including asymmetric and higher-order symmetric modes. Our simulations quantitatively demonstrate the out-of-plane and in-plane photoinduced strain dynamics in realistic silicon plates, ranging from the plate wave form to pulse trains, depending on material parameters such as sample thickness, optical penetration depth, and sound velocity.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/4.0000059","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000059","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we investigate the femtosecond-optical-pulse-induced strain dynamics in relatively thin (100 nm) and thick (10 000 nm) silicon plates based on finite-element simulations. In the thin sample, almost spatially homogeneous excitation by the optical pulse predominantly generates a standing wave of the lowest-order acoustic resonance mode along the out-of-plane direction. At the same time, laterally propagating plate waves are emitted at the sample edge through the open edge deformation. Fourier transformation analysis reveals that the plate waves in the thin sample are mainly composed of two symmetric Lamb waves, reflecting the spatially uniform photoexcitation. In the thick sample, on the other hand, only the near surface region is photo-excited and thus a strain pulse that propagates along the out-of-plane direction is generated, accompanying the laterally propagating pulse-like strain dynamics through the edge deformation. These lateral strain pulses consist of multiple Lamb waves, including asymmetric and higher-order symmetric modes. Our simulations quantitatively demonstrate the out-of-plane and in-plane photoinduced strain dynamics in realistic silicon plates, ranging from the plate wave form to pulse trains, depending on material parameters such as sample thickness, optical penetration depth, and sound velocity.

Abstract Image

Abstract Image

Abstract Image

硅薄板光致应变动力学的有限元模拟。
在本文中,我们基于有限元模拟研究了飞秒光脉冲在相对较薄(100 nm)和较厚(10 000 nm)硅板中的应变动力学。在薄样品中,光脉冲在空间上几乎均匀的激发主要沿面外方向产生最低阶声共振模式的驻波。同时,通过开边变形在试样边缘处发射横向传播的板波。傅里叶变换分析表明,薄样品中的板波主要由两个对称的兰姆波组成,反映了空间均匀的光激发。另一方面,在厚样品中,只有近表面区域被光激发,因此产生沿面外方向传播的应变脉冲,伴随着通过边缘变形横向传播的脉冲状应变动力学。这些侧向应变脉冲由多个兰姆波组成,包括非对称和高阶对称模式。我们的模拟定量地展示了现实硅板中的面外和面内光致应变动力学,范围从板波形到脉冲序列,取决于材料参数,如样品厚度,光学穿透深度和声速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信