Pathway-based protein–protein association network to explore mechanism of α-glucosidase inhibitors from Scutellaria baicalensis Georgi against type 2 diabetes
Le Wang, Wenbo Diwu, Nana Tan, Huan Wang, Jingbo Hu, Bailu Xu, Xiaoling Wang
{"title":"Pathway-based protein–protein association network to explore mechanism of α-glucosidase inhibitors from Scutellaria baicalensis Georgi against type 2 diabetes","authors":"Le Wang, Wenbo Diwu, Nana Tan, Huan Wang, Jingbo Hu, Bailu Xu, Xiaoling Wang","doi":"10.1049/syb2.12019","DOIUrl":null,"url":null,"abstract":"<p>Natural products have been widely used in the treatment of type 2 diabetes (T2D). However, their mechanisms are often obscured due to multi-components and multi-targets. The authors constructed a pathway-based protein–protein association (PPA) network for target proteins of 13 α-glucosidase inhibitors (AGIs) identified from <i>Scutellaria baicalensis</i> Georgi (<i>SBG</i>), designed to explore the underlying mechanisms. This network contained 118 nodes and 1167 connections. An uneven degree distribution and small-world property were observed, characterised by high clustering coefficient and short average path length. The PPA network had an inherent hierarchy as <i>C(k)∼k</i><sup>−0.71</sup>. It also exhibited potential weak disassortative mixing pattern, coupled with a decreased function <i>Knn</i> (<i>k</i>) and negative value of assortativity coefficient. These properties indicated that a few nodes were crucial to the network. PGH2, GNAS, MAPK1, MAPK3, PRKCA, and MAOA were then identified as key targets with the highest degree values and centrality indices. Additionally, a core subnetwork showed that chrysin, 5,8,2′-trihydroxy-7-methoxyflavone, and wogonin were the main active constituents of these AGIs, and that the serotonergic synapse pathway was the critical pathway for <i>SBG</i> against T2D. The application of a pathway-based protein–protein association network provides a novel strategy to explore the mechanisms of natural products on complex diseases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675860/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Natural products have been widely used in the treatment of type 2 diabetes (T2D). However, their mechanisms are often obscured due to multi-components and multi-targets. The authors constructed a pathway-based protein–protein association (PPA) network for target proteins of 13 α-glucosidase inhibitors (AGIs) identified from Scutellaria baicalensis Georgi (SBG), designed to explore the underlying mechanisms. This network contained 118 nodes and 1167 connections. An uneven degree distribution and small-world property were observed, characterised by high clustering coefficient and short average path length. The PPA network had an inherent hierarchy as C(k)∼k−0.71. It also exhibited potential weak disassortative mixing pattern, coupled with a decreased function Knn (k) and negative value of assortativity coefficient. These properties indicated that a few nodes were crucial to the network. PGH2, GNAS, MAPK1, MAPK3, PRKCA, and MAOA were then identified as key targets with the highest degree values and centrality indices. Additionally, a core subnetwork showed that chrysin, 5,8,2′-trihydroxy-7-methoxyflavone, and wogonin were the main active constituents of these AGIs, and that the serotonergic synapse pathway was the critical pathway for SBG against T2D. The application of a pathway-based protein–protein association network provides a novel strategy to explore the mechanisms of natural products on complex diseases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.