P Wang, S J A Majerus, R Karam, B Hanzlicek, D L Lin, H Zhu, J M Anderson, M S Damaser, C A Zorman, W H Ko
{"title":"LONG-TERM EVALUATION OF A NON-HERMETIC MICROPACKAGE TECHNOLOGY FOR MEMS-BASED, IMPLANTABLE PRESSURE SENSORS.","authors":"P Wang, S J A Majerus, R Karam, B Hanzlicek, D L Lin, H Zhu, J M Anderson, M S Damaser, C A Zorman, W H Ko","doi":"10.1109/transducers.2015.7180966","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reports long-term evaluation of a micropackage technology for an implantable MEMS pressure sensor. The all-polymer micropackage survived 160 days when subjected to accelerated lifetime testing at 85 °C in a 1% wt. saline solution. The package shows minimum effect on sensors' sensitivity and nonlinearity, which deviated by less than 5% and 0.3%, respectively. A 6-month <i>in vivo</i> evaluation of 16 MEMS-based pressure sensors demonstrated that the proposed micropackage has good biocompatibility and can protect the MEMS pressure sensor. To the best of our knowledge, these results establish new lifetime records for devices packaged using an all-polymer micropackaging approach.</p>","PeriodicalId":91719,"journal":{"name":"International Solid-State Sensors, Actuators and Microsystems Conference : [proceedings]. International Conference on Solid-State Sensors, Actuators, and Microsystems","volume":"2015 ","pages":"484-487"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/transducers.2015.7180966","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Solid-State Sensors, Actuators and Microsystems Conference : [proceedings]. International Conference on Solid-State Sensors, Actuators, and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/transducers.2015.7180966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper reports long-term evaluation of a micropackage technology for an implantable MEMS pressure sensor. The all-polymer micropackage survived 160 days when subjected to accelerated lifetime testing at 85 °C in a 1% wt. saline solution. The package shows minimum effect on sensors' sensitivity and nonlinearity, which deviated by less than 5% and 0.3%, respectively. A 6-month in vivo evaluation of 16 MEMS-based pressure sensors demonstrated that the proposed micropackage has good biocompatibility and can protect the MEMS pressure sensor. To the best of our knowledge, these results establish new lifetime records for devices packaged using an all-polymer micropackaging approach.