Mary Sproull, Peter Mathen, Charlotte Anne Miller, Megan Mackey, Teresa Cooley, Deedee Smart, Uma Shankavaram, Kevin Camphausen
{"title":"A Serum Proteomic Signature Predicting Survival in Patients with Glioblastoma.","authors":"Mary Sproull, Peter Mathen, Charlotte Anne Miller, Megan Mackey, Teresa Cooley, Deedee Smart, Uma Shankavaram, Kevin Camphausen","doi":"10.16966/2576-5833.117","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Glioblastoma (GBM) is the most common form of brain tumor and has a uniformly poor prognosis. Development of prognostic biomarkers in easily accessible serum samples have the potential to improve the outcomes of patients with GBM through personalized therapy planning.</p><p><strong>Material/methods: </strong>In this study pre-treatment serum samples from 30 patients newly diagnosed with GBM were evaluated using a 40-protein multiplex ELISA platform. Analysis of potentially relevant gene targets using The Cancer Genome Atlas database was done using the Glioblastoma Bio Discovery Portal (GBM-BioDP). A ten-biomarker subgroup of clinically relevant molecules was selected using a functional grouping analysis of the 40 plex genes with two genes selected from each group on the basis of degree of variance, lack of co-linearity with other biomarkers and clinical interest. A Multivariate Cox proportional hazard approach was used to analyze the relationship between overall survival (OS), gene expression, and resection status as covariates.</p><p><strong>Results: </strong>Thirty of 40 of the MSD molecules mapped to known genes within TCGA and separated the patient cohort into two main clusters centered predominantly around a grouping of classical and proneural versus the mesenchymal subtype as classified by Verhaak. Using the values for the 30 proteins in a prognostic index (PI) demonstrated that patients in the entire cohort with a PI below the median lived longer than those patients with a PI above the median (HR 1.8, p=0.001) even when stratified by both age and MGMT status. This finding was also consistent within each Verhaak subclass and highly significant (range p=0.0001-0.011). Additionally, a subset of ten proteins including, CRP, SAA, VCAM1, VEGF, MDC, TNFA, IL7, IL8, IL10, IL16 were found to have prognostic value within the TCGA database and a positive correlation with overall survival in GBM patients who had received gross tumor resection followed by conventional radiation therapy and temozolomide treatment concurrent with the addition of valproic acid.</p><p><strong>Conclusion: </strong>These findings demonstrate that proteomic approaches to the development of prognostic assays for treatment of GBM may hold potential clinical value.</p>","PeriodicalId":92393,"journal":{"name":"Journal of biochemistry and analytical studies","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057620/pdf/nihms-1556504.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry and analytical studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16966/2576-5833.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Glioblastoma (GBM) is the most common form of brain tumor and has a uniformly poor prognosis. Development of prognostic biomarkers in easily accessible serum samples have the potential to improve the outcomes of patients with GBM through personalized therapy planning.
Material/methods: In this study pre-treatment serum samples from 30 patients newly diagnosed with GBM were evaluated using a 40-protein multiplex ELISA platform. Analysis of potentially relevant gene targets using The Cancer Genome Atlas database was done using the Glioblastoma Bio Discovery Portal (GBM-BioDP). A ten-biomarker subgroup of clinically relevant molecules was selected using a functional grouping analysis of the 40 plex genes with two genes selected from each group on the basis of degree of variance, lack of co-linearity with other biomarkers and clinical interest. A Multivariate Cox proportional hazard approach was used to analyze the relationship between overall survival (OS), gene expression, and resection status as covariates.
Results: Thirty of 40 of the MSD molecules mapped to known genes within TCGA and separated the patient cohort into two main clusters centered predominantly around a grouping of classical and proneural versus the mesenchymal subtype as classified by Verhaak. Using the values for the 30 proteins in a prognostic index (PI) demonstrated that patients in the entire cohort with a PI below the median lived longer than those patients with a PI above the median (HR 1.8, p=0.001) even when stratified by both age and MGMT status. This finding was also consistent within each Verhaak subclass and highly significant (range p=0.0001-0.011). Additionally, a subset of ten proteins including, CRP, SAA, VCAM1, VEGF, MDC, TNFA, IL7, IL8, IL10, IL16 were found to have prognostic value within the TCGA database and a positive correlation with overall survival in GBM patients who had received gross tumor resection followed by conventional radiation therapy and temozolomide treatment concurrent with the addition of valproic acid.
Conclusion: These findings demonstrate that proteomic approaches to the development of prognostic assays for treatment of GBM may hold potential clinical value.