G Brooke Anderson, Colin Eason, Elizabeth A Barnes
{"title":"Working with Daily Climate Model Output Data in R and the futureheatwaves Package.","authors":"G Brooke Anderson, Colin Eason, Elizabeth A Barnes","doi":"10.32614/rj-2017-032","DOIUrl":null,"url":null,"abstract":"<p><p>Research on climate change impacts can require extensive processing of climate model output, especially when using ensemble techniques to incorporate output from multiple climate models and multiple simulations of each model. This processing can be particularly extensive when identifying and characterizing multi-day extreme events like heat waves and frost day spells, as these must be processed from model output with daily time steps. Further, climate model output is in a format and follows standards that may be unfamiliar to most R users. Here, we provide an overview of working with daily climate model output data in R. We then present the futureheatwaves package, which we developed to ease the process of identifying, characterizing, and exploring multi-day extreme events in climate model output. This package can input a directory of climate model output files, identify all extreme events using customizable event definitions, and summarize the output using user-specified functions.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"9 1","pages":"124-137"},"PeriodicalIF":2.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048414/pdf/nihms-1061093.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2017-032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Research on climate change impacts can require extensive processing of climate model output, especially when using ensemble techniques to incorporate output from multiple climate models and multiple simulations of each model. This processing can be particularly extensive when identifying and characterizing multi-day extreme events like heat waves and frost day spells, as these must be processed from model output with daily time steps. Further, climate model output is in a format and follows standards that may be unfamiliar to most R users. Here, we provide an overview of working with daily climate model output data in R. We then present the futureheatwaves package, which we developed to ease the process of identifying, characterizing, and exploring multi-day extreme events in climate model output. This package can input a directory of climate model output files, identify all extreme events using customizable event definitions, and summarize the output using user-specified functions.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.