Vijini G Mallawaarachchi, Anuradha S Wickramarachchi, Yu Lin
{"title":"Improving metagenomic binning results with overlapped bins using assembly graphs.","authors":"Vijini G Mallawaarachchi, Anuradha S Wickramarachchi, Yu Lin","doi":"10.1186/s13015-021-00185-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metagenomic sequencing allows us to study the structure, diversity and ecology in microbial communities without the necessity of obtaining pure cultures. In many metagenomics studies, the reads obtained from metagenomics sequencing are first assembled into longer contigs and these contigs are then binned into clusters of contigs where contigs in a cluster are expected to come from the same species. As different species may share common sequences in their genomes, one assembled contig may belong to multiple species. However, existing tools for binning contigs only support non-overlapped binning, i.e., each contig is assigned to at most one bin (species).</p><p><strong>Results: </strong>In this paper, we introduce GraphBin2 which refines the binning results obtained from existing tools and, more importantly, is able to assign contigs to multiple bins. GraphBin2 uses the connectivity and coverage information from assembly graphs to adjust existing binning results on contigs and to infer contigs shared by multiple species. Experimental results on both simulated and real datasets demonstrate that GraphBin2 not only improves binning results of existing tools but also supports to assign contigs to multiple bins.</p><p><strong>Conclusion: </strong>GraphBin2 incorporates the coverage information into the assembly graph to refine the binning results obtained from existing binning tools. GraphBin2 also enables the detection of contigs that may belong to multiple species. We show that GraphBin2 outperforms its predecessor GraphBin on both simulated and real datasets. GraphBin2 is freely available at https://github.com/Vini2/GraphBin2 .</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"16 1","pages":"3"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13015-021-00185-6","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-021-00185-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 9
Abstract
Background: Metagenomic sequencing allows us to study the structure, diversity and ecology in microbial communities without the necessity of obtaining pure cultures. In many metagenomics studies, the reads obtained from metagenomics sequencing are first assembled into longer contigs and these contigs are then binned into clusters of contigs where contigs in a cluster are expected to come from the same species. As different species may share common sequences in their genomes, one assembled contig may belong to multiple species. However, existing tools for binning contigs only support non-overlapped binning, i.e., each contig is assigned to at most one bin (species).
Results: In this paper, we introduce GraphBin2 which refines the binning results obtained from existing tools and, more importantly, is able to assign contigs to multiple bins. GraphBin2 uses the connectivity and coverage information from assembly graphs to adjust existing binning results on contigs and to infer contigs shared by multiple species. Experimental results on both simulated and real datasets demonstrate that GraphBin2 not only improves binning results of existing tools but also supports to assign contigs to multiple bins.
Conclusion: GraphBin2 incorporates the coverage information into the assembly graph to refine the binning results obtained from existing binning tools. GraphBin2 also enables the detection of contigs that may belong to multiple species. We show that GraphBin2 outperforms its predecessor GraphBin on both simulated and real datasets. GraphBin2 is freely available at https://github.com/Vini2/GraphBin2 .
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.