Partial differential model of lactate neuro-energetics: analytic results and numerical simulations

Angélique Perrillat-Mercerot;Alain Miranville;Abramo Agosti;Elisabetta Rocca;Pasquale Ciarletta;Rémy Guillevin
{"title":"Partial differential model of lactate neuro-energetics: analytic results and numerical simulations","authors":"Angélique Perrillat-Mercerot;Alain Miranville;Abramo Agosti;Elisabetta Rocca;Pasquale Ciarletta;Rémy Guillevin","doi":"10.1093/imammb/dqaa016","DOIUrl":null,"url":null,"abstract":"Interfaces play a key role on diseases development because they dictate the energy inflow of nutrients from the surrounding tissues. What is underestimated by existing mathematical models is the biological fact that cells are able to use different resources through nonlinear mechanisms. Among all nutrients, lactate appears to be a sensitive metabolic when talking about brain tumours or neurodegenerative diseases. Here we present a partial differential model to investigate the lactate exchanges between cells and the vascular network in the brain. By extending an existing kinetic model for lactate neuro-energetics, we first provide analytical proofs of the uniqueness and the derivation of precise bounds on the solutions of the problem including diffusion of lactate in a representative volume element comprising the interface between a capillary and cells. We further perform finite element simulations of the model in two test cases, discussing the relevant physical parameters governing the lactate dynamics.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"38 2","pages":"178-201"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqaa016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9514661/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interfaces play a key role on diseases development because they dictate the energy inflow of nutrients from the surrounding tissues. What is underestimated by existing mathematical models is the biological fact that cells are able to use different resources through nonlinear mechanisms. Among all nutrients, lactate appears to be a sensitive metabolic when talking about brain tumours or neurodegenerative diseases. Here we present a partial differential model to investigate the lactate exchanges between cells and the vascular network in the brain. By extending an existing kinetic model for lactate neuro-energetics, we first provide analytical proofs of the uniqueness and the derivation of precise bounds on the solutions of the problem including diffusion of lactate in a representative volume element comprising the interface between a capillary and cells. We further perform finite element simulations of the model in two test cases, discussing the relevant physical parameters governing the lactate dynamics.
乳酸神经能量学的偏微分模型:分析结果和数值模拟
界面在疾病发展中起着关键作用,因为它们决定了周围组织营养物质的能量流入。现有数学模型低估了一个生物学事实,即细胞能够通过非线性机制使用不同的资源。在所有营养素中,当谈到脑瘤或神经退行性疾病时,乳酸似乎是一种敏感的代谢物质。在这里,我们提出了一个偏微分模型来研究大脑中细胞和血管网络之间的乳酸交换。通过扩展现有的乳酸神经能量学动力学模型,我们首先提供了问题解的唯一性和精确边界的推导的分析证明,包括乳酸在包括毛细管和细胞之间界面的代表性体积单元中的扩散。我们在两个测试案例中进一步对模型进行了有限元模拟,讨论了控制乳酸动力学的相关物理参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信