The existence of nonnegative solutions for a nonlinear fractional q-differential problem via a different numerical approach.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2021-01-01 Epub Date: 2021-04-23 DOI:10.1186/s13660-021-02612-z
Mohammad Esmael Samei, Ahmad Ahmadi, Sayyedeh Narges Hajiseyedazizi, Shashi Kant Mishra, Bhagwat Ram
{"title":"The existence of nonnegative solutions for a nonlinear fractional <i>q</i>-differential problem via a different numerical approach.","authors":"Mohammad Esmael Samei,&nbsp;Ahmad Ahmadi,&nbsp;Sayyedeh Narges Hajiseyedazizi,&nbsp;Shashi Kant Mishra,&nbsp;Bhagwat Ram","doi":"10.1186/s13660-021-02612-z","DOIUrl":null,"url":null,"abstract":"<p><p>This paper deals with the existence of nonnegative solutions for a class of boundary value problems of fractional <i>q</i>-differential equation <math><mmultiscripts><mi>D</mi> <mi>q</mi> <mi>σ</mi> <mprescripts></mprescripts> <none></none> <mi>c</mi></mmultiscripts> <mo>[</mo> <mi>k</mi> <mo>]</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>w</mi> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>k</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msup><mrow></mrow> <mi>c</mi></msup> <msubsup><mi>D</mi> <mi>q</mi> <mi>ζ</mi></msubsup> <mo>[</mo> <mi>k</mi> <mo>]</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo></math> with three-point conditions for <math><mi>t</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></math> on a time scale <math><msub><mi>T</mi> <msub><mi>t</mi> <mn>0</mn></msub> </msub> <mo>=</mo> <mo>{</mo> <mi>t</mi> <mo>:</mo> <mi>t</mi> <mo>=</mo> <msub><mi>t</mi> <mn>0</mn></msub> <msup><mi>q</mi> <mi>n</mi></msup> <mo>}</mo> <mo>∪</mo> <mo>{</mo> <mn>0</mn> <mo>}</mo></math> , where <math><mi>n</mi> <mo>∈</mo> <mi>N</mi></math> , <math><msub><mi>t</mi> <mn>0</mn></msub> <mo>∈</mo> <mi>R</mi></math> , and <math><mn>0</mn> <mo><</mo> <mi>q</mi> <mo><</mo> <mn>1</mn></math> , based on the Leray-Schauder nonlinear alternative and Guo-Krasnoselskii theorem. Moreover, we discuss the existence of nonnegative solutions. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-021-02612-z","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-021-02612-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

This paper deals with the existence of nonnegative solutions for a class of boundary value problems of fractional q-differential equation D q σ c [ k ] ( t ) = w ( t , k ( t ) , c D q ζ [ k ] ( t ) ) with three-point conditions for t ( 0 , 1 ) on a time scale T t 0 = { t : t = t 0 q n } { 0 } , where n N , t 0 R , and 0 < q < 1 , based on the Leray-Schauder nonlinear alternative and Guo-Krasnoselskii theorem. Moreover, we discuss the existence of nonnegative solutions. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.

Abstract Image

Abstract Image

Abstract Image

用不同的数值方法研究非线性分数阶q微分问题非负解的存在性。
摘要非负解的存在性的一类边值问题部分q-differential方程D qσc [k] (t) = w (t, k (t), c D qζ[k] (t))三点条件t∈(0,1)时间尺度t t 0 = {q t: t = 0 n}∪{0},其中n∈n t 0∈R, q和0 1,基于Leray-Schauder非线性替代和Guo-Krasnoselskii定理。此外,我们还讨论了非负解的存在性。举例涉及算法和图解的图表,以证明我们的理论发现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信