Threespine Stickleback: A Model System For Evolutionary Genomics.

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY
Kerry Reid, Michael A Bell, Krishna R Veeramah
{"title":"Threespine Stickleback: A Model System For Evolutionary Genomics.","authors":"Kerry Reid, Michael A Bell, Krishna R Veeramah","doi":"10.1146/annurev-genom-111720-081402","DOIUrl":null,"url":null,"abstract":"<p><p>The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"22 ","pages":"357-383"},"PeriodicalIF":7.7000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415275/pdf/nihms-1730595.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-111720-081402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.

Abstract Image

Abstract Image

Abstract Image

三刺棒背鱼:进化基因组学的模型系统
海洋三刺鱼对淡水的反复适应使其成为研究平行进化的主要生物。这些小鱼有多种不同的生态型,表现出多种多样的表型特征。三刺鱼的生态型在实验室中很容易杂交,而且家系庞大、发育迅速,足以进行定量性状位点分析,因此三刺鱼是一种用途广泛的模式生物,可用于解决广泛的生物学问题。广泛的基因组资源,包括连接图谱、高质量参考基因组和发育遗传学工具,使人们对适应的基因组基础有了深入了解,并确定了控制脊椎动物性状的基因组变化。最近,三刺鱼被用作一个模型系统来鉴定高度复杂性状的基因组基础,如行为、宿主-微生物组和宿主-寄生虫相互作用。我们回顾了导致三刺鱼被视为进化基因组学超级模型的最新发现和新的研究途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信