Ibrahim A Darwish, Hany W Darwish, Ahmed H Bakheit, Hamad M Al-Kahtani, Zahi Alanazi
{"title":"Irbesartan (a comprehensive profile).","authors":"Ibrahim A Darwish, Hany W Darwish, Ahmed H Bakheit, Hamad M Al-Kahtani, Zahi Alanazi","doi":"10.1016/bs.podrm.2020.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>Irbesartan, (2-butyl-3-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1,3-diazaspiro[4.4]non-1-en-4-one), is a member of non-peptide angiotensin II receptor antagonists used worldwide in the treatment of hypertension and diabetic nephropathy in hypertensive patients with type 2 diabetes, elevated serum creatinine, and proteinuria. Irbesartan can be used alone or in combination with other antihypertensive agents (e.g., hydrochlorothiazide). These combination products are indicated for hypertension in patients with uncontrolled hypertension with monotherapy or first line in patients not expected to be well controlled with monotherapy. Irbesartan is also indicated for the treatment of diabetic nephropathy in patients with type 2 diabetes and hypertension, an elevated serum creatinine, and proteinuria. Irbesartan exerts its action mainly via a selective blockade action on AT1 receptors and the consequent reduced pressor effect of angiotensin II. This article discusses, by a critical comprehensive review of the literature on irbesartan in terms of its description, names, formulae, elemental composition, appearance, and therapeutic uses. The article also discusses the methods for preparation of irbesartan, its physical-chemical properties, analytical methods for its determination, pharmacological-toxicological properties, and dosing information.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2020.07.004","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Profiles of drug substances, excipients, and related methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.podrm.2020.07.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 6
Abstract
Irbesartan, (2-butyl-3-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1,3-diazaspiro[4.4]non-1-en-4-one), is a member of non-peptide angiotensin II receptor antagonists used worldwide in the treatment of hypertension and diabetic nephropathy in hypertensive patients with type 2 diabetes, elevated serum creatinine, and proteinuria. Irbesartan can be used alone or in combination with other antihypertensive agents (e.g., hydrochlorothiazide). These combination products are indicated for hypertension in patients with uncontrolled hypertension with monotherapy or first line in patients not expected to be well controlled with monotherapy. Irbesartan is also indicated for the treatment of diabetic nephropathy in patients with type 2 diabetes and hypertension, an elevated serum creatinine, and proteinuria. Irbesartan exerts its action mainly via a selective blockade action on AT1 receptors and the consequent reduced pressor effect of angiotensin II. This article discusses, by a critical comprehensive review of the literature on irbesartan in terms of its description, names, formulae, elemental composition, appearance, and therapeutic uses. The article also discusses the methods for preparation of irbesartan, its physical-chemical properties, analytical methods for its determination, pharmacological-toxicological properties, and dosing information.